Simply it
Answers
Answered by
6
1+3i/1–2i
=(1+3i)(1+2i)/(1–2i)(1+2i) ; we multiply both numerator and denominator with (1+2i) so that we can get a denominator free from i
={1+3i+2i+(3i×2i)}/{(1)^2–(2i)^2} ; since (a+b)(a-b)=a^2-b^2
=(1+5i+6i^2)/(1–4i^2)
={1+5i+6(-1)}/{1–4(-1)} ; since i^2=-1
=(1+5i-6)/(1+4)
=5i-5/5
=5(i-1)/5
=i-1 ; or
=(√-1) - 1
Answered by
12
EXPLANATION.
Simplify,
⇒ 1 + 3i/1 - 2i.
As we know that,
We can rationalize the equation, we get.
⇒ 1 + 3i/1 - 2i X 1 + 2i/1 + 2i.
⇒ (1 + 3i)(1 + 2i)/(1 - 2i)(1 + 2i).
⇒ (1 + 2i + 3i + 6i²)/(1 - 4i²).
As we know that,
⇒ i² = -1.
Put the values in the equation, we get.
⇒ (1 + 5i + 6(-1))/(1 - 4(-1)).
⇒ (5i - 6 + 1)/(1 + 4).
⇒ (5i - 5)/5.
⇒ 5(i - 1)/5.
⇒ i - 1.
MORE INFORMATION.
Properties of conjugate complex number.
if z = a + ib.
Similar questions