Math, asked by swaruppatankar18, 4 months ago

simply log10( 145/8)-log10(3/2)+log10(54/29)​

Answers

Answered by MaheswariS
3

\textbf{To simplify:}

\mathsf{log_{10}\left(\dfrac{145}{8}\right)-log_{10}\left(\dfrac{3}{2}\right)+log_{10}\left(\dfrac{54}{29}\right)}

\textbf{Solution:}

\boxed{\mathsf{Quotient\;rule:\;\;\;log_a\dfrac{M}{N}=log_aM-log_aN}}

\boxed{\mathsf{Product\;rule:\;\;\;log_aM\,N=log_aM+log_aN}}

\textsf{Consider,}

\mathsf{log_{10}\left(\dfrac{145}{8}\right)-log_{10}\left(\dfrac{3}{2}\right)+log_{10}\left(\dfrac{54}{29}\right)}

\textsf{Using quotient rule, we get}

\mathsf{=log_{10}\left(\dfrac{\dfrac{145}{8}}{\dfrac{3}{2}}\right)+log_{10}\left(\dfrac{54}{29}\right)}

\mathsf{=log_{10}\left(\dfrac{145}{8}{\times}\dfrac{2}{3}}\right)+log_{10}\left(\dfrac{54}{29}\right)}

\textsf{Using product rule,}

\mathsf{=log_{10}\left(\dfrac{145}{8}{\times}\dfrac{2}{3}{\times}\dfrac{54}{29}\right)}

\mathsf{=log_{10}\left(\dfrac{5}{4}{\times}\dfrac{1}{3}{\times}\dfrac{54}{1}\right)}

\mathsf{=log_{10}\left(\dfrac{5}{4}{\times}18\right)}

\mathsf{=log_{10}\left(\dfrac{5}{2}{\times}9\right)}

\mathsf{=log_{10}\left(\dfrac{45}{2}\right)}

\textbf{Answer:}

\mathsf{log_{10}\left(\dfrac{45}{2}\right)}

\textbf{Find more:}

x^2 + y^2= 25xy, then prove that 2 log(x+y)=3log3+logx+logy

https://brainly.in/question/477579

If 2log(x-y)=logx +logy, prove that 2log(x+y)= log5+logx +logy

https://brainly.in/question/16912979

Answered by Anushkasen21
2

Answer:

sir ne Jo answer Diya vo theek Hain

maine check kr liya.

hope it's helps

Similar questions