Math, asked by sreeja33, 1 year ago

simply(
( \sqrt{x } +  \sqrt{y} ) {}^{2}  - ( \sqrt{x}  -  \sqrt{y} ) {}^{2}

Answers

Answered by Nereida
1

\huge\boxed{\texttt{\fcolorbox{purple}{blue}{Heya !!!}}}

QUES:

(x + y) {}^{2}  -  {(x - y)}^{2}

ANS:

 = ( {x}^{2}  +  {y}^{2}  + 2xy) - ( {x}^{2}  +  {y}^{2}  - 2xy)

 =  {x}^{2}  +  {y}^{2}  + 2xy -  {x}^{2}  -  {y}^{2}  + 2xy

 = 2xy + 2xy

 = 4xy

.

.

.

HOPE IT HELPS YOU...

.

.

.

↩HIT THANKS

↩MARK BRAINLIEST

↩AND FOLLOW ME

Answered by TRISHNADEVI
12
 \red{ \huge{ \underline{ \overline{ \mid{ \bold{ \purple{ \: \: SOLUTION \: \: \red{ \mid}}}}}}}}


 \Longrightarrow \: \underline{ \underline{ \bold{ \: \: FORMULA \: \: USE \: \: : }}} \to



 \star \: \: \: \: \: \boxed{ \bold{ \: \: a {}^{2} - b {}^{2} = (a + b)(a - b) \: \: \: }}


 \bold{( \sqrt{x} + \sqrt{y} ) {}^{2} - ( \sqrt{x} - \sqrt{y} ) {}^{2} } \\ \\ \bold{ = [(\sqrt{x} + \sqrt{y} ) + ( \sqrt{x} - \sqrt{y} )][( \sqrt{x} + \sqrt{y} ) - ( \sqrt{x} - \sqrt{y} )]} \\ \\ \bold{ = ( \sqrt{x} + \sqrt{y} + \sqrt{x} - \sqrt{y} )( \sqrt{x} + \sqrt{y} - \sqrt{x} + \sqrt{y} } \: ) \\ \\ \bold{ =( 2 \sqrt{x}) \times (2 \sqrt{y} ) } \\ \\ = \boxed{ \bold{ 4 \sqrt{xy} }}
Similar questions