Math, asked by ayush9899, 9 months ago

Simply the expression


 \frac{1}{6}  \div  \frac{5}{6}  \div  \sqrt{4} \:   -  \frac{1}{9}

Answers

Answered by BrainlyDectective12
226

\frac{1}{6} \div \frac{5}{6} \div \sqrt{4} \: - \frac{1}{9}

to divide by a fraction multiply by the reciprocal of that fraction

\frac{1}{6}  \times  \frac{6}{5} \div \sqrt{4} \: - \frac{1}{9}

\frac{1}{6} \div \frac{5}{6} \div \sqrt{4} \: - \frac{1}{9}

 \frac{1}{6}  \times  \frac{6}{5}  \div 2 -  \frac{1}{9}

dividing is equivalent to multiplying with the reciprocal

 \frac{1}{6}  \times  \frac{6}{5}  \times  \frac{1}{2}  -  \frac{1}{9}

  \cancel\frac{1} {6}  \times   \cancel\frac{6}{5}  \div 2 -  \frac{1}{9}

reduse the numbers with greatest common factor 6

 \frac{1}{5}  \times  \frac{1}{2}  -  \frac{1}{9}

multiply the fractions

 \frac{1}{10}  -  \frac{1}{9}

subtract the fraction

 -  \frac{1}{90}

Alternate form

 - 0.01,  { -  90}^{ - 1}

Answered by Anonymous
49

\huge{\mathcal{\purple{A}\green{n}\pink{s}\blue{w}\purple{E}\green{R!}}}

\implies \frac{1}{6} \div \frac{5}{6} \div \sqrt{4} \: - \frac{1}{9}

to divide by a fraction multiply by the reciprocal of that fraction

\implies\frac{1}{6}  \times  \frac{6}{5} \div \sqrt{4} \: - \frac{1}{9} \\\\</p><p></p><p>\implies \frac{1}{6} \div \frac{5}{6} \div \sqrt{4} \: - \frac{1}{9} \\\\</p><p></p><p> \implies \frac{1}{6}  \times  \frac{6}{5}  \div 2 -  \frac{1}{9}

dividing is equivalent to multiplying with the reciprocal

\implies \frac{1}{6}  \times  \frac{6}{5}  \times  \frac{1}{2}  -  \frac{1}{9} \\\\</p><p>  \cancel\frac{1} {6}  \times   \cancel\frac{6}{5}  \div 2 -  \frac{1}{9}

reduse the numbers with greatest common factor 6

 \frac{1}{5}  \times  \frac{1}{2}  -  \frac{1}{9}

multiply the fractions

\frac{1}{10}  -  \frac{1}{9}

subtract the fraction

-  \frac{1}{90}

Similar questions