Math, asked by ayush9899, 7 months ago

simply the following



 \sqrt{4 +  \sqrt{4} +  \sqrt{4}   +  \sqrt{4}  \div  \sqrt{5} }

Answers

Answered by BrainlyDectective12
217

\sqrt{4 + \sqrt{4} + \sqrt{4} + \sqrt{4} \div \sqrt{5} }

write the division as fraction

\sqrt{4 + \sqrt{4} + \sqrt{4} + \sqrt{ \frac{4}{ \sqrt{5} } }  }

Rationalize the denominator

\sqrt{4 + \sqrt{4} + \sqrt{4} + \sqrt{ \frac{4 \sqrt{5} }{5} }  }

to take a root of fraction take the the root of the number and denominator separately

\sqrt{4 + \sqrt{4} + \sqrt{4} +  \frac{ \sqrt{4 \sqrt{5} } }{ \sqrt{5} }  }

Simplify the redical expression

\sqrt{4 + \sqrt{4} + \sqrt{4} +  \frac{2 \sqrt{ \sqrt{5} } }{5}  }

 \bold{using \sqrt{m \sqrt{n \sqrt{a} } } } =   \sqrt[mn]{a}  Simply the expression

\sqrt{4 + \sqrt{4} + \sqrt{4} +  \frac{ 2\sqrt[4]{5} }{ \sqrt{5} }  }

rationalize the denominator

\sqrt{4 + \sqrt{4} + \sqrt{4} +  \frac{2 \sqrt[4]{5} \sqrt{5}  }{5}  }

 \bold{using \:  \sqrt[n]{a}  =   \sqrt[mn]{ {a}^{m} } }expand the expression

\sqrt{4 + \sqrt{4} + \sqrt{4} +  \frac{2 \sqrt[4]{5}{   \sqrt[4]{ {5}^{2} }  }  }{5}  }

the product of roots with the same index is equal to the root of the product

\sqrt{4 + \sqrt{4} + \sqrt{4} +  \frac{2 \sqrt[4]{5 \times  {5}^{2} } } {5}  }

calculate the product

\sqrt{4 + \sqrt{4} + \sqrt{4} +  \frac{2 \sqrt[4]{ {5}^{3} }  }{5}  }

evalute the power

\sqrt{4 + \sqrt{4} + \sqrt{4} +  \frac{2 \sqrt[4]{125}  }{5}  }

Alternate form

≈ 2.55187

Similar questions