simply (x+1)^3-(x-1)^3
Answers
Answered by
0
Answer:
Hello friends!!
Here is your answer :
{(x + 1)}^{3} - {(x - 1)}^{3}(x+1)
3
−(x−1)
3
Using identity : ( a + b)³ = a³ + b³ + 3ab(a + b)
{(x)}^{3} + {(1)}^{3} + 3(x)(1)(x + 1) - ( {(x)}^{3} - {(1)}^{3} + 3(x)( - 1)( x - 1))(x)
3
+(1)
3
+3(x)(1)(x+1)−((x)
3
−(1)
3
+3(x)(−1)(x−1))
{x}^{3} + 1 + 3 {x}^{2} + 3x - ( {x}^{3} - 1 - 3 {x}^{2} + 3x)x
3
+1+3x
2
+3x−(x
3
−1−3x
2
+3x)
{x}^{3} + 1 + 3 {x}^{2} + 3x - {x}^{3} + 1 + 3 {x}^{2} - 3xx
3
+1+3x
2
+3x−x
3
+1+3x
2
−3x
2 + 6 {x}^{2}2+6x
2
6 {x}^{2} + 26x
2
+2
Answered by
1
Answer:
using identity : (a+b)^3=a^3+b^3+3ab(a+b)
=> (x)^3+(1)^3+3(x)(1)(x+1)-{(x)^3-(1)^3+3(x)(-1)(x-1)}
=> x^3+1+3x^2+3x-(x^3-1-3x^2+3x)
=> x^3+1+3x^2+3x-x^3+1+3x^2-3x
=> 2+6x^2
=> 6x^2+2
Mark as brainliest
Similar questions