Math, asked by jacky51, 8 months ago

simply (x+1)^3-(x-1)^3

Answers

Answered by vidyapradiptandel196
0

Answer:

Hello friends!!

Here is your answer :

{(x + 1)}^{3} - {(x - 1)}^{3}(x+1)

3

−(x−1)

3

Using identity : ( a + b)³ = a³ + b³ + 3ab(a + b)

{(x)}^{3} + {(1)}^{3} + 3(x)(1)(x + 1) - ( {(x)}^{3} - {(1)}^{3} + 3(x)( - 1)( x - 1))(x)

3

+(1)

3

+3(x)(1)(x+1)−((x)

3

−(1)

3

+3(x)(−1)(x−1))

{x}^{3} + 1 + 3 {x}^{2} + 3x - ( {x}^{3} - 1 - 3 {x}^{2} + 3x)x

3

+1+3x

2

+3x−(x

3

−1−3x

2

+3x)

{x}^{3} + 1 + 3 {x}^{2} + 3x - {x}^{3} + 1 + 3 {x}^{2} - 3xx

3

+1+3x

2

+3x−x

3

+1+3x

2

−3x

2 + 6 {x}^{2}2+6x

2

6 {x}^{2} + 26x

2

+2

Answered by Nishika20
1

Answer:

using identity : (a+b)^3=a^3+b^3+3ab(a+b)

=> (x)^3+(1)^3+3(x)(1)(x+1)-{(x)^3-(1)^3+3(x)(-1)(x-1)}

=> x^3+1+3x^2+3x-(x^3-1-3x^2+3x)

=> x^3+1+3x^2+3x-x^3+1+3x^2-3x

=> 2+6x^2

=> 6x^2+2

Mark as brainliest

Similar questions