Simplyfying the expression Sin² theta+ Cos² theta + Cot² theta, we get
Answers
Answered by
1
Answer:-
We will use the following identities:
cos(θ2)=√1+cosθ2sin(θ2)
=√1−cosθ2
Thus, substituting these into the expression, we get:
cos2(θ2)−sin2(θ2)
=(√1+cosθ2)2−(√1−cos2)
=1+cosθ2−1−cosθ2
=1+cosθ−(1−cosθ)2
=1−1+cosθ+cosθ2
=2cosθ2=cosθ
Hope it helps
Similar questions