Math, asked by krkanthkam260, 4 months ago

simplyify secA(1-sinA)(secA+tanA)​

Answers

Answered by assingh
22

Topic

Trigonometry

To Simplify

secA( 1 - sinA )( secA + tanA )

Solution

Multiply secA with ( 1 - sinA )

[ ( secA × 1 ) - ( secA × sinA ) ]( secA + tanA )

As we know that,

\sf {secA = \dfrac{1}{cosA}}

We can write,

 \sf {[ secA - ( \dfrac{1}{cosA} \times sinA ) ]( secA + tanA ) }

As we know,

 \sf {\dfrac{sinA}{cosA} = tanA }

We can write,

 \sf { ( secA - tanA )( secA + tanA ) }

From formula,

( a - b )( a + b ) = a² - b²

We can write,

sec²A - tan²A

Form formula,

1 + tan²x = sec²x

1 = sec²x - tan²x

We can write,

sec²A - tan²A = 1

Answer

So, secA( 1 - sinA )( secA + tanA ) = 1

More Formulae

sin²x + cos²x = 1

1 + cot²x = cosec²x

Answered by Anonymous
4

Given : 

secA (1−sinA)(secA+tanA)

cosA1(1−sinA) \\ (cosA1 \: + \: cosAsinA)

(∵secA=cosA1)

(cosA1−sinA)(cosA1+sinA)

cos2A1−sin2A

As, 1−sin2A=cos2A

cos2Acos2A =1

Similar questions