Math, asked by vaibhav8856, 1 year ago

simultaneous equation

Attachments:

Answers

Answered by gshyal
0
x = 2 and y = -3 is right answer.
Answered by harshitha202034
0

Answer:

 \frac{4}{x}  +  \frac{3}{y}  = 1 ⟹⓵\\  \frac{6}{x}  -  \frac{15}{y}  = 8⟹⓶ \\ \\  Substituting \:  \:  a  \:  \: for  \:  \:  \frac{1}{x}  \:  \: and \:  \: b \:  \: for \:  \:  \frac{1}{y}  \\  \\ New \:  \:  Equation \:  \:  is: \\ 4a + 3b = 1⟹⓵ \\ 6a - 15b = 8⟹⓶ \\  \\ Multiply \:  \:  Equation \:  \:  ⓵ \:  \: by \:  \: 5 \\ (4a + 3b = 1) \times 5 \\ 20a + 15b = 5⟹⓵  \\ 6a - 15b = 8⟹⓶ \\  \\ Add  \:  \: the \:  \:  Two \:  \:  Equations :  \\ 20a + 15b = 5 \\ 6a - 15b = 8 \\  -  -  -  -  -  -  -  \\ 26a = 13 \\ a =  \frac{ \cancel{ 13}_{ \:  \: 1}}{ \cancel{ 26}_{ \:  \: 2}}  \\  \boxed{ \large a =  \underline{ \underline{ \frac{1}{2} }}} \\  \\ 6a - 15b = 8 \\ ( _{3 \:  \: }\cancel 6  \times  \frac{1}{ \cancel 2 _{ \:  \: 1} } ) - 15b = 8 \\ 3 - 15b = 8 \\  3 - 8 = 15b \\  - 5 = 15b \\  \frac{_{ - 1 \:  \: } \cancel{ - 5}}{_{3 \:  \: } \cancel{ 15}}  = b \\   \boxed{ \large{ \underline{ \underline{ \frac{ - 1}{3}}}  = b}} \\  \\ a =  \frac{1}{x}  \\  \frac{1}{2}  =  \frac{1}{x}  \\ \boxed{\large x = \underline{ \underline{ 2}}} \\  \\ b =  \frac{1}{y}  \\  \frac{ - 1}{3}  =  \frac{1}{y}  \\ y =  \frac{3}{ - 1}  \\ \boxed{\large y = \underline{ \underline{ - 3}}}

Similar questions