Math, asked by manyashetty1233, 8 hours ago

simultaneous equations 2x+3y=7;3x-y=5​

Answers

Answered by xSoyaibImtiazAhmedx
0

Given equations are —

  • 2x + 3y =7 ---------------(1)
  • 3x - y = 5 -----------------(2)

{ We will solve it by Substituting Method }

From eq (1) ,

2x = 7 - 3y

x = \bold{\frac{7 - 3y }{2}\:\:--------(3)}

Putting the value of x in eq(2) we get,

 \implies \: 3 \times  \frac{7 - 3y}{2}  + 3y = 7

\implies \:   \frac{21 - 9y}{2}  + 3y = 7

\implies \:   \frac{21 - 9y - 6y}{2}   = 7

\implies \:   {21 - 15y}   = 14

\implies \:   {15y}   = 21 - 14

\implies \:   \underline{\bold { {y}   =  \frac{7}{15} }}

Now, Putting the value of y in eq(3) we get ,

 \large \:  \:  \:  \: \bold{x = \frac{7 - 3 \times  \frac{7}{15}  }{2}}

  \large \:  \:  \:  \: \bold{  \implies \: x= \frac{7 -  \frac{7}{5}  }{2}}

  \large \:  \:  \:  \: \bold{ \implies \: x = \frac{\frac{35 - 7}{5}  }{2}}

  \large \:  \:  \:  \: \bold{ \implies \: x = \frac{\frac{28}{5}  }{2}}

 \large \:  \:  \:  \: \bold{ \implies \: x = \frac{28}{5} \times  \frac{1}{2}   }

\large \:  \:  \:  \:  \underline\bold{ \implies \: x = \frac{14}{5} }

Hence,

★ x = 14/5

★ y = 7/15

Similar questions