Math, asked by neesamirakhur, 2 days ago

simultaneous equations (elimination method)

y=3x-5 and 2x-6y= 8

Answers

Answered by Anonymous
1

Answer:

Y = 3x - 5

=> -3x + y = -5 ----->(1)

=>2x - 6y = 8 ----->(2)

Multiple equation (1) by 6

=> 6 × (-3x) + 6 × y = 6 × (-5)

=> -18x + 6y = -30

Now, equation (1) + equation (2)

-18x + 6y = -30

+2x - 6y = + 8

------------------------

-16x 0 = -22

 \:  \:  \:  =  >  \: x \:  =   \frac{ - 22}{ - 16}

 \:  \:  \: =  >  \: x \:  =  \frac{11}{8}

Substitute value of x in equation (2)

 =  > 2( \frac{11}{8}) \:  - 6y \:  =  8

 =  > 22 \:  \:  -  \:48y \:  =  \: 64

 =  >  \:  - 48y \:  =  \: 64 \:  - 22

 = >- y \:  = \:  \frac{42}{48}

 = >- y \:  =  \:  \:  \frac{7}{8}

 => y \:  =    \frac{ - 7}{ \:  \: 8}

Therefore:

 \: X = \frac{11}{8}

and

 \: Y = \frac{- 7}{ \: \: 8}

Similar questions