Math, asked by eashanrusia30, 1 month ago

Simultaneous Linear Equations​

Attachments:

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: here \: given \: linear \: equations \: are \:  \\  \frac{x}{3}  \:  -  \:  \frac{2}{x + y}  = 1 \:   \\ \\ ie \:  \:  \frac{x}{3}  \:  -  \: 2 \times  \frac{1}{x + y}  = 1 \\  \\  \frac{x}{4}  \: +  \:  \frac{3}{x + y}  = 3 \\  \\ ie \:  \:  \frac{x}{4}  \:  +  \: 3 \times  \frac{1}{x + y}  = 3 \\  \\ so \:  \: let \:  \:  \frac{1}{x + y}  = k

hence \: accordingly \\  \frac{x}{3}  - 2k = 1 \\  \\  \frac{ x - 2k  \times 3}{3}  = 1 \\  \\ x - 6k = 3 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (1) \\  \\  \frac{x}{4}  + 3k = 3 \\  \\  \frac{x + 3k \times 4}{4}  = 3 \\  \\ ie \:  \: x + 12k = 12 \:  \:  \:  \:  \: (2)

subtracting \: (1) \: from \: (2) \\ we \: get \\ 18k = 9 \\ ie \:  \: k = \frac{9}{18}  \\  \\ k =  \frac{1}{2}  \\  \\ substitute \: value \: of \: k \: in \: (1) \\ we \: get \\ x = 6 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (3) \\  \\ so \: resubstituting \: value \: of \: k  \: as \:  \frac{1}{x + y}  \\ we \: get \\  \frac{1}{x + y}  =  \frac{1}{2 }  \\  \\ x + y = 2 \\ 6 + y = 2 \:  \:  \:  \:  \:  \:  \:  \:  \: from \: (3) \\ ie \:  \: y =  - 4

hence \: (x,y) = (6, - 4) \: is \: solution \: of \: above \: linear \: equations \:  \\

Similar questions