Math, asked by eashanrusia30, 1 month ago

Simultaneous Linear Equations​

Attachments:

Answers

Answered by Anonymous
6

Answer

  • The value of x = 4 and y = 3.

Given

  • \tt \cfrac{14}{x + y}  +  \cfrac{3}{x - y}  = 5

  • \tt \cfrac{21}{x + y}  -  \cfrac{1}{x - y}  = 2

To Find

  • The value of x and y.

Step By Step Explanation

Assumption :

Let us assume that \sf\cfrac{1}{x+y} be u and \sf\cfrac{1}{x-y} be v.

Equation :

Then the equation will be

\sf14u + 3v = 5 and \sf21u  - v = 2

Solution of equation :

Let's solve the above equation.

\sf \:  \:  \:  \:  \:  \:  \: 14u + 3v = 5 \\  \sf3 \times (21u  - v = 2)  \downarrow \\  \\  \tt14u + 3v = 5 \\ \tt 63u  - 3v = 6 \\  -  -  -  -  -  -  \\ \tt 77u = 11 \implies \: u \:  =  \cfrac{ \cancel{11}}{ \cancel{77}}  \\  \\ \implies \bold{ \green{u =  \cfrac{1}{7}}} \\ \\ \tt \cancel{14} \times \cfrac{1}{ \cancel7} + 3v = 5 \implies 2 + 3v = 5 \\  \\ \implies  \bold{ \pink{v  = 1}}\\  \\ \bold{u =  \cfrac{1}{7}  \:  \:  \: and \:  \:  \: v =1 }

By substituting the value :

Let's substituting the values of u and v. To find the value of x and y.

So let's do it !!

\longmapsto \sf \cfrac{1}{x + y}  = u \\  \\   \longmapsto \sf\cfrac{1}{x + y}  =  \cfrac{1}{7}  \\  \\ \longmapsto \bold{ x + y = 7}\:  \:  \:  \:  \:   \:  \:  \:  =  >  eq. 1 \\  \\  \\  \longmapsto \sf \cfrac{1}{x - y}  =  v \\  \\ \longmapsto \sf\cfrac{1}{x - y}  = 1 \\  \\\longmapsto \bold{ x - y = 1} \:  \:  \:  \:  \:  \:  \:  =  > eq.2

Now, x and y will be

\sf{x + y = 7} \\ \sf{ x - y = 1} \\  -  -  -  -  - \\  \sf{ 2x = 8} \implies \:  { \boxed{\bold{ \red{x = 4}}}} \:  \:  \:   \:  \: \bigstar\\  \\  \\  \sf{x + y = 7 \implies4 + y = 7} \\  \\ \sf{ y = 7 - 4} \implies \: { \boxed{\bold{ \purple{ y = 3}}}} \:  \:  \:  \:  \: \bigstar

Therefore, the value of x = 4 and y = 3.

_______________________

Similar questions