Math, asked by gamerak131, 9 months ago

sin 0÷1-cos0=
cosec 0 +cot 0​

Answers

Answered by Cosmique
6

To prove :

\dfrac{sin\theta}{1-cos\theta}=cosec\theta + cot\theta

Proof :

Taking LHS

\longrightarrow LHS = \dfrac{sin\theta}{1-cos\theta}

\red{\sf{multiplying\:by\:1+cos\theta\:in\:numerator\:and\:denominator }}

\longrightarrow LHS = \dfrac{sin\theta}{1-cos\theta}\times \dfrac{1+cos\theta}{1+cos\theta}

\red{\sf{Using\:algebraic\:identity\:a^2-b^2=(a+b)(a-b)}}

\longrightarrow LHS = \dfrac{sin\theta(1-cos\theta)}{(1)^2-(cos\theta)^2}

\longrightarrow LHS = \dfrac{sin\theta(1-cos\theta)}{1-cos^2\theta}

\red{\sf{using\:trigonometric\:identity\:1-cos^2A=sin^2A}}

\longrightarrow LHS = \dfrac{sin\theta(1-cos\theta)}{sin^2\theta}

\longrightarrow LHS = \dfrac{1+cos\theta}{sin\theta}

\longrightarrow LHS = \dfrac{1}{sin\theta} + \dfrac{cos\theta}{sin\theta}

\longrightarrow LHS = cosec\theta + cot\theta = RHS

\underline{\underline{\bf{Hence\:Proved.}}}

know some trigonometric identites

\red{\bigstar}\boxed{\sf{sin^A+cos^2A = 1}}

\red{\bigstar} \boxed{\sf{1+tan^2A =sec^2A}}

\red{\bigstar}\boxed{\sf{1+cot^2A = cosec^2A}}

know some trigonometric ratios

\red{\bigstar} \sf{ tanA= \dfrac{sinA}{cosA}}

\red{\bigstar}\sf{cotA = \dfrac{cosA}{sinA}}

\red{\bigstar}\sf{cosecA = \dfrac{1}{sinA}}

\red{\bigstar} \sf{ secA= \dfrac{1}{cosA}}

Similar questions