Math, asked by singlavikram41, 8 months ago

(sin 0 + sec )2 +(cos 0 + cosec 6)2
= (1 + sec 0 cosec 0)2​

Answers

Answered by deviaparnaboddeti
1

Answer:

I hope this will be able to you

1. (1 – cos2 A) cosec2 A = 1

Solution:

Taking the L.H.S,

(1 – cos2 A) cosec2 A

= (sin2 A) cosec2 A [∵ sin2 A + cos2 A = 1 ⇒1 – sin2 A = cos2 A]

= 12

= 1 = R.H.S

– Hence Proved

2. (1 + cot2 A) sin2 A = 1

Solution:

By using the identity,

cosec2 A – cot2 A = 1 ⇒ cosec2 A = cot2 A + 1

Taking,

L.H.S = (1 + cot2 A) sin2 A

= cosec2 A sin2 A

= (cosec A sin A)2

= ((1/sin A) × sin A)2

= (1)2

= 1

= R.H.S

– Hence Proved

3. tan2 θ cos2 θ = 1 − cos2 θ

Solution:

We know that,

sin2 θ + cos2 θ = 1

Taking,

L.H.S = tan2 θ cos2 θ

= (tan θ × cos θ)2

= (sin θ)2

= sin2 θ

= 1 – cos2 θ

= R.H.S

– Hence Proved

4. cosec θ √(1 – cos2 θ) = 1

Solution:

Using identity,

sin2 θ + cos2 θ = 1 ⇒ sin2 θ = 1 – cos2 θ

Taking L.H.S,

L.H.S = cosec θ √(1 – cos2 θ)

= cosec θ √( sin2 θ)

= cosec θ x sin θ

= 1

= R.H.S

– Hence Proved

5. (sec2 θ − 1)(cosec2 θ − 1) = 1

Solution:

Using identities,

(sec2 θ − tan2 θ) = 1 and (cosec2 θ − cot2 θ) = 1

We have,

L.H.S = (sec2 θ – 1)(cosec2θ – 1)

= tan2θ × cot2θ

= (tan θ × cot θ)2

= (tan θ × 1/tan θ)2

= 12

= 1

= R.H.S

– Hence Proved

6. tan θ + 1/ tan θ = sec θ cosec θ

Solution:

We have,

L.H.S = tan θ + 1/ tan θ

= (tan2 θ + 1)/ tan θ

= sec2 θ / tan θ [∵ sec2 θ − tan2 θ = 1]

= (1/cos2 θ) x 1/ (sin θ/cos θ) [∵ tan θ = sin θ / cos θ]

= cos θ/ (sin θ x cos2 θ)

= 1/ cos θ x 1/ sin θ

= sec θ x cosec θ

= sec θ cosec θ

= R.H.S

– Hence Proved

7. cos θ/ (1 – sin θ) = (1 + sin θ)/ cos θ

Solution:

We know that,

sin2 θ + cos2 θ = 1

So, by multiplying both the numerator and the denominator by (1+ sin θ), we get

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 1

L.H.S =

= R.H.S

– Hence Proved

8. cos θ/ (1 + sin θ) = (1 – sin θ)/ cos θ

Solution:

We know that,

sin2 θ + cos2 θ = 1

So, by multiplying both the numerator and the denominator by (1- sin θ), we get

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 2

L.H.S =

= R.H.S

– Hence Proved

9. cos2 θ + 1/(1 + cot2 θ) = 1

Solution:

We already know that,

cosec2 θ − cot2 θ = 1 and sin2 θ + cos2 θ = 1

Taking L.H.S,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 3

= cos2 A + sin2 A

= 1

= R.H.S

– Hence Proved

10.

Similar questions