Math, asked by pihu7737, 1 year ago

sin 0/
sec + tan 0-1
+cos 0/
cosec e + cote-1=1​

Answers

Answered by spiderman2019
8

Answer:

Step-by-step explanation:

[SInθ/ Secθ + Tanθ - 1]   + [Cosθ/ Cosecθ + Cotθ - 1 ]

=> [SinθCosθ/1 + Sinθ - Cosθ] + [CosθSinθ/1 + Cosθ - Sinθ]

= [SinθCosθ/1 + Sinθ - Cosθ]  + [CosθSinθ/1 - (Sinθ - Cosθ)]

=> SinθCosθ [ 1 / 1 + (Sinθ - Cosθ)  + 1 / 1 - (Sinθ - Cosθ) ]

=> SinθCosθ [ 1 - (Sinθ - Cosθ) + 1 + (Sinθ - Cosθ) / 1 - (Sinθ - Cosθ)²]

=> SinθCosθ [ 1 + 1 - Sinθ + Cosθ + Sinθ +  Cosθ / 1 - (Sin²θ + Cos²θ -  

                                                                                       2SinθCosθ)]

=> SinθCosθ [ 2 / 1 - (1 - 2SinθCosθ)]

=> 2SinθCosθ/ 2SinθCosθ

=> 1

= R.H.S

Hence proved.

Similar questions