sin 0/
sec + tan 0-1
+cos 0/
cosec e + cote-1=1
Answers
Answered by
8
Answer:
Step-by-step explanation:
[SInθ/ Secθ + Tanθ - 1] + [Cosθ/ Cosecθ + Cotθ - 1 ]
=> [SinθCosθ/1 + Sinθ - Cosθ] + [CosθSinθ/1 + Cosθ - Sinθ]
= [SinθCosθ/1 + Sinθ - Cosθ] + [CosθSinθ/1 - (Sinθ - Cosθ)]
=> SinθCosθ [ 1 / 1 + (Sinθ - Cosθ) + 1 / 1 - (Sinθ - Cosθ) ]
=> SinθCosθ [ 1 - (Sinθ - Cosθ) + 1 + (Sinθ - Cosθ) / 1 - (Sinθ - Cosθ)²]
=> SinθCosθ [ 1 + 1 - Sinθ + Cosθ + Sinθ + Cosθ / 1 - (Sin²θ + Cos²θ -
2SinθCosθ)]
=> SinθCosθ [ 2 / 1 - (1 - 2SinθCosθ)]
=> 2SinθCosθ/ 2SinθCosθ
=> 1
= R.H.S
Hence proved.
Similar questions