Math, asked by Jiyaa021, 1 month ago

sin^-1 (√1-cosx)/ V1+cosx)

please give correct ans

don't give st.upid answer

Answers

Answered by ajr111
60

Answer:

\sin^{-1}(tan\frac{x}{2})

Step-by-step explanation:

Given Question :

\sin^{-1}\bigg(\dfrac{\sqrt{1-\cos x}}{\sqrt{1+\cos x}} \bigg)

To find :

The value of the given expression

Solution ;

\sin^{-1}\bigg(\dfrac{\sqrt{1-\cos x}}{\sqrt{1+\cos x}} \bigg)

Multiply and divide by \sqrt{1-\cos x} inside the bracket

: \longmapsto \sin^{-1}\bigg(\dfrac{\sqrt{1-\cos x} \times \sqrt{1-\cos x}}{\sqrt{1+\cos x }\times \sqrt{1-\cos x}}  \bigg)

: \longmapsto \sin^{-1}\bigg(\dfrac{1-\cos x}{\sqrt{1-\cos ^2x} }  \bigg)

: \longmapsto \sin^{-1}\bigg(\dfrac{1-\cos x}{\sqrt{\sin ^2x} }  \bigg)

\text{We know that, } \boxed {\sin^2x + cos^2x = 1}

: \longmapsto \sin^{-1}\bigg(\dfrac{2\sin^2{\frac{x}{2}}}{\sin x} }  \bigg)

\text{We know that, } \boxed {1-cosx =2sin^2\frac{x}{2} }

: \longmapsto \sin^{-1}\bigg(\dfrac{2\sin^2{\frac{x}{2}}}{2\sin \frac{x}{2}\cos \frac{x}{2}} }  \bigg)

\text{We know that, } \boxed {sinx=2sin\frac{x}{2} \cos\frac{x}{2}}

: \longmapsto \sin^{-1}\bigg(\dfrac{\sin{\frac{x}{2}}}{\cos \frac{x}{2}} }  \bigg)

: \longmapsto \underline {\boxed{\sin^{-1}(tan\frac{x}{2})}}

This is the final answer.

[Note : If u can't see some expressions, please see it in the Chrome using brainly.in (Keep it in the desktop mode and see it) The link of this question is : https://brainly.in/question/44340859]

Hope it helps!!

Similar questions