Math, asked by MADANLAL286, 11 months ago

Sin-1(2-3x square) find the domain

Answers

Answered by waqarsd
4

Answer:

[-1 , 1]

Step-by-step explanation:

Range of Sin is from -1 to 1

Range of Sin inverse is - pi/2 to pi/2

 -  \frac{ \pi}{2}  <  { \sin}^{ - 1} (2 - 3 {x}^{2} ) <  \frac{ \pi}{2}  \\  \\  apply \: sin \\  \\  \sin( -  \frac{ \pi}{2} )  <  \sin( { \sin}^{ - 1}(2 - 3 {x}^{2}  ))  <  \sin(\frac{ \pi}{2})  \\  \\  - 1 < 2 - 3 {x}^{2}  < 1 \\  \\ multiply \:  \:  - 1 \\  \\  - 1 < 3 {x}^{2}  - 2 < 1 \\  \\ 1 < 3 {x}^{2}  < 3 \\  \\  \frac{1}{3}  <  {x}^{2}  < 1 \\  \\ since \: domain \: is \: in \: numerator \\  \\  <  =  \leq \\  \\  {x}^{2}  -  \frac{1}{3}  \geq0 \\  \\ this \: does \: not \: satisfy \: being \: domain \\  \\ therefore \\  \\ domain \: is \:  {x}^{2}  - 1 \leq0 \\  \\

Hope it Helps

Similar questions