sin-1(4x)+sin-1(3x)=-π\2
Answers
Inverse Circular Function
Formula:
Now we solve the problem:
Squaring both sides, we get:
Squaring both sides, we get:
Either or,
This is the required solution.
Answer:
sin^{-1}x+sin^{-1}y=sin^{-1}[x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}}]
Now we solve the problem:
\quad sin^{-1}(4x)+sin^{-1}(3x)=-\frac{\pi}{2}
\to sin^{-1}[4x\sqrt{1-9x^{2}}+3x\sqrt{1-16x^{2}}]=-\frac{\pi}{2}
\to 4x\sqrt{1-9x^{2}}+3x\sqrt{1-16x^{2}}=sin(-\frac{\pi}{2})=-1
\to 4x\sqrt{1-9x^{2}}+1=-3x\sqrt{1-16x^{2}}
Squaring both sides, we get:
\quad 16x^{2}(1-9x^{2})+8x\sqrt{1-9x^{2}}+1=9x^{2}(1-16x^{2})
\to 16x^{2}-144x^{4}+8x\sqrt{1-9x^{2}}+1=9x^{2}-144x^{4}
\to 8x\sqrt{1-9x^{2}}=-7x^{2}-1
Squaring both sides, we get:
\quad 64x^{2}(1-9x^{2})=49x^{4}-14x^{2}+1
\to 64x^{2}-576x^{4}=49x^{4}-14x^{2}+1
\to 625x^{4}-50x^{2}+1=0
\to (25x^{2}-1)^{2}=0
Either 25x^{2}-1=0 or, 25x^{2}-1=0
\implies \boxed{x=\pm \frac{1}{5},\:\pm \frac{1}{5}}
This is the required solution.
Step-by-step explanation:
if this helps you, please mark me as the brainliest