sin ^-1 (8/x) + sin ^ -1 (15/x) = π/2
can any one solve it ?
Answers
Answered by
0
Answer:
x = ±17
Step-by-step explanation:
sin^-1(8/x) + sin^-1(15/x) = π/2
\text{but we know,}but we know,
\boxed{\boxed{\bold{sin^{-1}X+cos^{-1}X=\frac{\pi}{2}}}}sin−1X+cos−1X=2π
so, Let sin^-1(15/x) = P
sinP = 15/x
then, cosP = √(x² - 225)/x
P = cos^-1{√(x² - 225)/x}
now, sin^-1(8/x) + cos^-1{√(x² - 225)/x}= π/2
so, 8/x = √(x² - 225)/x
8 = √(x² - 225)
taking square both sides,
64 = x² - 225
x² = 289 => 17²
x = ±17
hence, x = ±17
Similar questions