sin /1 + cos A + 1 + cos A/ sin A = cosec A
Answers
Answer:
Sin 1783=cosec A
please follow me
Step-by-step explanation:
I believe your Question was,
"Prove that :-
(SinA/(1 + CosA)) + ((1 + CosA)/SinA) = 2CosecA"
Now,
(SinA/(1 + CosA)) + ((1 + CosA)/SinA)
Solving,
(SinA × SinA) + ((1 + CosA)(1 + CosA)/(SinA)(1 + CosA)
((Sin²A) + (1 + CosA)²)/(SinA)(1 + CosA)
((Sin²A) + (1² + 2(1)(CosA) + Cos²A))/(SinA)(1 + CosA)
(Sin²A + Cos²A + 1 + 2CosA)/(SinA)(1 + CosA)
((Sin²A + Cos²A) + 1 + 2CosA)/(SinA)(1 + CosA)
We know that,
(Sin²A + Cos²A) = 1
((1) + 1 + 2CosA)/(SinA)(1 + CosA)
(1 + 1 + 2CosA)/(SinA)(1 + CosA)
(2 + 2CosA)/(SinA)(1 + CosA)
2(1 + CosA)/(SinA)(1 + CosA)
Cancelling the common terms,
2/SinA
We know that,
1/SinA = CosecA
Thus,
2/SinA = 2 × (1/SinA)
= 2 × (CosecA)
= 2CosecA
∴ LHS = RHS
Hence proved
Thus,
(SinA/(1 + CosA)) + ((1 + CosA)/SinA) = 2CosecA
It might be difficult and a bit confusing to read out the typing, so, I have also uploaded an image of the written solution, please do refer it.
Hope it helped and believing you understood it........All the best