Math, asked by Anonymous, 10 months ago

sin∅/1-cos∅ = cos∅+cot∅

Answers

Answered by ShresthaTheMetalGuy
2

♦Correct question♦:

To Prove:

LHS =  \frac{ \sin(θ) }{1 -  \cos(θ) }  \: and \: RHS =  \cosec(θ) +  \cot(θ)

Proof:

Taking LHS:

LHS =  \frac{ \sin(θ) }{1 -  \cos(θ) }

On rationalising the denominator, we get:

 =  \frac{ \sin(θ) }{1 -  \cos(θ) }  \times  \frac{1 +  \cos(θ) }{ 1 +  \cos(θ) }

 =   \frac{  \sin(θ) (1 +  \cos(θ) )}{(1 +  \cos(θ) )(1  - \cos(θ)) }

 =   \frac{ \sin(θ)(1  +  \cos(θ))  }{1 -  \cos^{2} (θ) }

[∵ sin²θ+cos²θ=1]

 =   \frac{ \sin(θ) (1 +  \cos(θ) )}{ \sin^{2} (θ) }

 =  \frac{1 +  \cos(θ) }{ \sin(θ) }

 =  \frac{1}{ \sin(θ) }  +  \frac{ \cos(θ) }{ \sin(θ) }

[∵ cosecθ=1/sinθ], and

[∵ cotθ=cosθ/sinθ]

As,

LHS  =  cosec(θ)  +  \cot(θ) =  RHS

Hence, proved.

Similar questions