Math, asked by narendra251, 1 year ago

sin/1+cosA+1+cosA/sinA

Answers

Answered by TheLifeRacer
0
Hey !!!

sinA / 1 + cosA + 1 + cosA/ sinA

=> sin² A + (1 + cosA)²
--------------------------------
sinA ( 1 + cosA)

=> sin²A + 1 + cos²A + 2cosA
---------------------------------------------------
sinA ( 1 + cosA )

=> sin²A+ cos²A + 1 + 2cosA
------------------------------------------------
sinA ( 1 + cos A)

=> 2 + 2cosA
-----------------------------
sinA ( 1 + cosA )

=> 2( 1 + cosA)
----------------------
sinA ( 1+ cosA)

=> 2/sinA = 2cosecA RHS prooved

Hope it helps you !!!

@Rajukumar111###

sivaprasath: 2/sinA is 2cosecA right?
sivaprasath: If I am right,please change it before anyone sees!!,/
sivaprasath: ok,just edit it,.
sivaprasath: you wrote 2/sinA = cosecA,.you forgot to type 2,.check ans.
sivaprasath: you didn'gt change it,bro.,
Answered by sivaprasath
4
Solution:

_____________________________________________________________


Given & To find:


 \frac{sinA}{cosA+1}+  \frac{cosA+1}{sin A} = ?


_____________________________________________________________

As we know,

[tex] \frac{cosA+1}{sinA} + \frac{sinA}{cosA+1} [/tex]

=   \frac{(cosA+1)(cosA+1)+(sinA)(sinA)}{(sinA)(cosA+1)}    (by cross-multiplication)

= =  \frac{(cosA+1)^2+(sinA)^2}{(sinA)(cosA+1)}

____________________________________________________________


As we know the formula that,


(a + b)² = a² + 2ab + b²


=  \frac{cos^2A+2cosA+1+sin^2A}{(sinA)(cosA+1)}


=  \frac{sin^2A+cos^2A + 2cosA +1 }{sinA(1+cosA)}


we know that,


sin^2A + cos^2A = 1


so,


= \frac{1+2cosA+1}{sinA(1+cosA)}


= \frac{2+2cosA}{sinA(1+cosA)}


= \frac{2(1+cosA)}{sinA(1+cosA)}

_____________________________________________________________

By, canceling cosA + 1 , as it is in both numerator and denominator
we get,


=  \frac{2}{sinA}


=2 ( \frac{1}{sinA})


We know that,


 \frac{1}{sinA} = cosecA


So, substituting  \frac{1}{sinA} = cosecA,

We get,

= 2cosecA ,.. = RHS

_____________________________________________________________

                                                        Hope it Helps..

Similar questions