Math, asked by saniya437, 15 days ago

sin-¹ (Sin-¹ ( 1/5) + cos-¹(x ) find x??​

Answers

Answered by kamalhajare543
39

Answer:

Given:-

\sf \: sin\bigg( {sin}^{ - 1}\dfrac{x}{5} + {cos}^{ - 1} \dfrac{3}{5} \bigg)

 \underbrace{\huge{ \pink{\underline{ \red{\sf \: To\:Find - }}}}}

  • \sf \:\: Value \: of \:x

\underbrace{\huge \underline{ \red{\sf{Solution-}}}}

 \underbrace{ \huge \red{ \underline{ \sf \: Given \:  that - }}}

 \rm :\longmapsto\: \sf \: sin\bigg( {sin}^{ - 1}\dfrac{x}{5} + {cos}^{ - 1} \dfrac{3}{5} \bigg) = 1:\\ \\ \rm :\longmapsto\: \sf \: {sin}^{ - 1}\dfrac{x}{5} + {cos}^{ - 1} \dfrac{3}{5} = {sin}^{ - 1}( 1):\\ \\ \rm :\longmapsto\: \sf \: {sin}^{ - 1}\dfrac{x}{5} + {cos}^{ - 1} \dfrac{3}{5} = {sin}^{ - 1}( sin\dfrac{\pi}{2} ):\\ \\ \rm :\longmapsto\: \sf \: {sin}^{ - 1}\dfrac{x}{5} + {cos}^{ - 1} \dfrac{3}{5} = \dfrac{\pi}{2}:\\ \\ \rm :\longmapsto\: \sf \: {sin}^{ - 1}\dfrac{x}{5} = \dfrac{\pi}{2} - {cos}^{ - 1} \dfrac{3}{5}:\\ \\ \rm :\longmapsto\: \sf \: {sin}^{ - 1}\dfrac{x}{5} = {sin}^{ - 1} \dfrac{3}{5}\\  \\ \: \: \: \: \: \: \because \: \bf \{ \: { \bf{ \: {sin}^{ - 1} x = \dfrac{\pi}{2} } \: - \: {cos}^{ - 1} x} \} \\  \\ \rm :\implies\:\dfrac{x}{ \cancel5} = \dfrac{3}{ \cancel5}

\bf\implies  \underbrace  \red{\underline{\:x \: = \:3}}

Similar questions