Math, asked by Prabhugopalj, 1 year ago

Sin(1) + sin (2) + sin (3) + .........sin(89)


Anonymous: is the question sin^2 (1)..+sin^2 (2)...

Answers

Answered by kvnmurty
30
Y = Sin 1° + sin 2° + sin 3° ...  + sin 88°  + sin 89°

Multiply both sides with 2 sin 1°.
2 Y sin 1° = 2 sin 1° sin 1° + 2 sin 2° sin 1° + 2 sin 3 sin 1°+ ...
                                + 2 sin 88° sin 1° + 2 sin 89 sin 1°
        = cos 0° - cos 2° + cos 1° - cos 3° + cos 2° - cos 4° + cos 3° - cos 5...
           ...  + cos 86 - cos 88° + cos 87° - cos 89° + cos 88° - cos 90°
        = 1 + cos 1° - cos 89°

Y = [1 + cos 1° - sin 1°] / (2 sin 1°) = 1/2 * [ cot 1/2°  - 1]

==============
we can do this by using complex numbers using De Moivre's formula:

Let 1° = 1*π/180 rad = a

Y=Imaginary\ part\ of\ \Sigma_a^{89a}{e^{ia}}\\\\=Im[ \frac{e^{ia}(1-e^{89a})}{1-e^{ia}} ]\\\\=Im[ \frac{e^{ia}-e^{i90a}}{1-e^{ia}}]=IM[ \frac{cos\ a-i\ (1-sin\ a)}{1-cos\ a + i\ sin a} ]\\\\=Im[ \frac{cos\ a + sin\ a -1}{2(1-cos\ a)}*(1 +i) ]\\\\=\frac{1}{2}(cot\ 1^o-1)

kvnmurty: click on red heart thanks.
Similar questions