Math, asked by priyanshu301102, 7 months ago

∫Sin ⁻¹(Sinx) [ANSWER = x²/2]

Answers

Answered by Anonymous
36

Solution:-

We have

 \rm \int \sin^{ - 1} ( \sin  x ) \:  dx

Now , let

 \rm \: \sin^{ - 1} ( \sin  x)  =  \theta

 \to \:  \rm \:  \sin  x =  \sin \theta

 \rm \:  \to \:  \:  \rm \:   \cancel{\sin}  x =   \cancel{ \sin} \theta

Now , we get

 \rm \:  \to \theta = x

we have already assumed

 \to \rm \int \: x \: dx

 \rm \:  \to \:   \dfrac{ {x}^{1 + 1} }{1 + 1}  + c

 \rm \:  \to \:  \dfrac{ {x}^{2} }{2}  + c

Now answer is

  \implies \boxed{ \rm \frac{ {x}^{2}  }{2}  + c}

Some integration identities

 \rm \to \:  \int \: dx \:  = x + c

  \to\rm \:  \int \:  \cos(x) dx =  \sin(x)  + c

 \rm \to \int \sin(x)dx  =  -  \cos(x)  + c

 \rm \to \:  \sec {}^{2} (x) dx =  \tan(x)  + c

 \rm \to \int \csc^{2} (x)  =  -  \cot(x)  + c

Similar questions