Math, asked by mayank152, 1 year ago

sin-1[sinx+cosx]/root2

Answers

Answered by mysticd
14

Answer:

 \red {sin^{-1}\left(\frac{sinx+cosx}{\sqrt{2}}\right)}\green {= x + \frac{\pi}{4}}

Step-by-step explanation:

 sin^{-1}\left(\frac{sinx+cosx}{\sqrt{2}}\right)

 = sin^{-1}\left( \frac{1}{\sqrt{2}}\times sinx + \frac{1}{\sqrt{2}}\times cosx\right)

 = sin^{-1}\left(cos \frac{\pi}{4}\times sinx + sin \frac{\pi}{4}\times cosx\right)

 = sin^{-1}[sin(x + \frac{\pi}{4} )]

\boxed {\pink { SinAcosB + sinBcosA = sin(A+B)}}

 = x + \frac{\pi}{4}

\boxed { \pink {Since, \:sin^{-1}(sinx) = x }}

Therefore.,

 \red {sin^{-1}\left(\frac{sinx+cosx}{\sqrt{2}}\right)}\green {= x + \frac{\pi}{4}}

•••♪

Answered by tejasware8
0

Answer:

1 it is correct answer please mark my answer as Brainlist

Similar questions