Math, asked by anzitech45, 7 months ago

Sin^-1 (x+√(1-x²))/√2

Attachments:

Answers

Answered by prince5132
22

GIVEN :-

 \\  \bigstar \displaystyle \sf \:  \sin ^{ - 1} \bigg( \frac{x +  \sqrt{1 - x ^{2} } }{ \sqrt{2} }   \bigg) \\

TO FIND :-

\\  \bigstar  \: \displaystyle \sf value \: of\:  \sin ^{ - 1} \bigg( \frac{x +  \sqrt{1 - x ^{2} } }{ \sqrt{2} }   \bigg) \\

SOLUTION :-

 \\ \dashrightarrow\displaystyle \sf \sin ^{ - 1} \bigg( \frac{x +  \sqrt{1 - x ^{2} } }{ \sqrt{2} }   \bigg) \\  \\

Now let the function,

 \\  \\ \dashrightarrow\displaystyle \sf y = \sin ^{ - 1} \bigg( \frac{x +  \sqrt{1 - x ^{2} } }{ \sqrt{2} }   \bigg) \\  \\  \\

 \bullet\displaystyle \sf \: x =  \sin \beta  \\  \\  \\

 \bullet\displaystyle \sf \:  \beta  =   \dfrac{1}{ \sin} x \\  \\  \\

 \bullet\displaystyle \sf \:  \beta  =   \sin ^{ - 1} x \\  \\  \\

 \dashrightarrow\displaystyle \sf \: y =  \sin ^{ - 1}  \bigg( \frac{ \sin  \beta  +  \sqrt{1 -  \sin ^{2} \beta }  }{ \sqrt{2} }  \bigg) \\  \\  \\

\dashrightarrow\displaystyle \sf \: y =  \sin ^{ - 1}  \bigg( \frac{ \sin  \beta  +  \sqrt{  \cos ^{2} \beta }  }{ \sqrt{2} }  \bigg) \\  \\  \\

\dashrightarrow\displaystyle \sf \: y =  \sin ^{ - 1}  \bigg(   \frac{ \sin \beta +  \cos\beta  }{ \sqrt{2} }  \bigg) \\  \\  \\

\dashrightarrow\displaystyle \sf \: y =  \sin ^{ - 1} \Bigg[  \bigg( \sin \beta +  \cos\beta \bigg)\Bigg] \dfrac{1}{ \sqrt{2} }  \\  \\  \\

\dashrightarrow\displaystyle \sf \: y =  \sin ^{ - 1}  \bigg( \sin \beta  \frac{1}{ \sqrt{2} } +  \cos\beta \frac{1}{ \sqrt{2} }  \bigg) \\  \\  \\

\dashrightarrow\displaystyle \sf \: y =  \sin ^{ - 1}  \bigg( \sin \beta  \frac{\pi}{4} +  \cos\beta \frac{\pi}{4}  \bigg) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg \lgroup  \frac{1}{ \sqrt{2}  }  =\cos\frac{\pi}{4} \bigg \rgroup \\  \\  \\

\dashrightarrow\displaystyle \sf \: y =  \sin ^{ - 1}  \Bigg[ \sin \beta . \cos \bigg( \frac{\pi}{4} \bigg) +  \cos \beta . \sin  \bigg( \frac{\pi}{4} \bigg) \Bigg] \\  \\  \\

\dashrightarrow\displaystyle \sf \: y =  \sin ^{ - 1}  \Bigg[  \sin \bigg( \beta  +  \frac{\pi}{4}  \bigg)\Bigg]  \\  \\  \\

\dashrightarrow\displaystyle \sf \: y =   \dfrac{1}{\sin }  \Bigg[\sin \bigg( \beta  +  \frac{\pi}{4}  \bigg)\Bigg]  \\  \\  \\

\dashrightarrow\displaystyle \sf \: y =   \beta  +  \frac{\pi}{4}  \\  \\  \\

\dashrightarrow\displaystyle \sf \: y =   \sin ^{ - 1} x +  \frac{\pi}{4}  \\  \\  \\

\dashrightarrow\underline{ \boxed{\displaystyle \sf\sin ^{ - 1} \bigg( \frac{x +  \sqrt{1 - x ^{2} } }{ \sqrt{2} }   \bigg)  = sin ^{ -1}x +  \frac{\pi}{4} }} \\


amitkumar44481: Perfect :-)
Vamprixussa: Fantastic !
Answered by Anonymous
12

Answer :

\bold{dy\:/\:dy\:=\:1\:/\:√1\:-\:x^2}

Explanation :

According to the question :

↦Let y = sin^{-1}\:[{x\:+\:√1\:-\:x^2\:/\:√2\:}]

↦Put x = sin θ , so

sin^{-1}\:[{sin\:θ\:+\:√1\:-\:sin^2\:θ\:/\:√2\:}]

sin^{-1}\:[{sin\:θ\:+\:cos\:θ\:/\:√2\:}]

sin^{-1}\:{[sin\:θ\:(\:1\:/\:√2\:)\:+\:cos\:θ\:(\:1\:/\:√2\:)\:}]

sin^{-1}\:[{sin\:θ\:cos\:π/4\:+\:cos\:θ\:sin\:π/4\:}]

y\:=\:sin^{-1}\:[{\:sin\:(\:θ\:+\:π/4\:)\:}]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Here,⇛\:-1\:<\:x\:<\:1

\:-1\:<\:sin\:θ\:<\:1

-π\:/\:2\:<\:θ\:<\:π\:/\:2

( -π\:/\:2\:+\:π\:/\:4 )\:<\:( π\:/\:4\:+\:θ )\:<\:3π\:/\:4

From Equation 1 :

y\:=\:θ\:+\:π\:/\:4 [sin^{-1}\:(\:sin\:θ\:)\:=\:θ\:)]

y\:=\:sin^{-1}\:x\:+\:π\:/\:4 [sin\:θ\:=\:x]

Differentiating it with respect to x :

dx\:/\:dy\:=\:1\:/\:√1\:-\:x^2\:+\:0

\bold{dy\:/\:dy\:=\:1\:/\:√1\:-\:x^2}

So, It's Done !!


amitkumar44481: Good :-)
Similar questions