Math, asked by ranjankumar101197, 3 months ago

sin-1
x + cos^3x, xe[-1, 1] =
TT
(
A)
O
(B)
2

(D)
(C)
n​

Answers

Answered by Sasmit257
1

Step-by-step explanation:

Identity (II)

Identity (II)9 a^{2}  - 24ab \:  + 16b^{2}

Identity (II)9 a^{2}  - 24ab \:  + 16b^{2} (a - b) ^{2}

Identity (II)9 a^{2}  - 24ab \:  + 16b^{2} (a - b) ^{2}  = a^{2}  - 2ab + b ^{2}

Identity (II)9 a^{2}  - 24ab \:  + 16b^{2} (a - b) ^{2}  = a^{2}  - 2ab + b ^{2} \huge\fbox\pink{Answer}

Identity (II)9 a^{2}  - 24ab \:  + 16b^{2} (a - b) ^{2}  = a^{2}  - 2ab + b ^{2} \huge\fbox\pink{Answer}(3a - 4b) (3a - 4b)

Identity (II)9 a^{2}  - 24ab \:  + 16b^{2} (a - b) ^{2}  = a^{2}  - 2ab + b ^{2} \huge\fbox\pink{Answer}(3a - 4b) (3a - 4b) Using identity (II)

Identity (II)9 a^{2}  - 24ab \:  + 16b^{2} (a - b) ^{2}  = a^{2}  - 2ab + b ^{2} \huge\fbox\pink{Answer}(3a - 4b) (3a - 4b) Using identity (II)(3a) ^{2}   - 2 \times 3a \times 4b + (4b) ^{2}

Identity (II)9 a^{2}  - 24ab \:  + 16b^{2} (a - b) ^{2}  = a^{2}  - 2ab + b ^{2} \huge\fbox\pink{Answer}(3a - 4b) (3a - 4b) Using identity (II)(3a) ^{2}   - 2 \times 3a \times 4b + (4b) ^{2} 9a^{2}  - 24ab + 16b ^{2}

Similar questions