Math, asked by divyanshsolanki14319, 1 month ago

sin^-1(x) +sin^-1(1-x) =sin^-1√1-x²​

Answers

Answered by rakeshdubey33
2

Answer:

x = {0, 1/2}

Step-by-step explanation:

Use the formula ;

 {sin}^{ - 1} (x) +  {sin}^{ - 1} (y) =  {sin}^{ - 1} (x \sqrt{1 -  {y}^{2} }  + y \sqrt{ {1 - x}^{2} } )

 {sin}^{ - 1} (x) +  {sin}^{ - 1} (1 - x) =  \\  {sin}^{ - 1} (x \sqrt{1 -  {(1 - x)}^{2} }  + (1 - x) \sqrt{ {1 - x}^{2} } )

 {sin}^{ - 1} (x \sqrt{2x -  {x}^{2} }  + (1 - x) \sqrt{1 -  {x}^{2} } ) =  \\  {sin}^{ - 1} (  \sqrt{1 -  {x}^{2} }  )

x \sqrt{2x -  {x}^{2} }  + (1 - x) \sqrt{1 -  {x}^{2} }  =  \\  \sqrt{1 -  {x}^{2} }

=

x \sqrt{2x -  {x}^{2} }  =  \sqrt{1 -  {x}^{2} } (1 - (1 - x)

=

x \sqrt{2x -  {x}^{2} }  = x \sqrt{1 -  {x}^{2} }

Squaring, we get,

 {x}^{2} (2x -  {x}^{2} ) =  {x}^{2}(1 -  {x}^{2}  ) \\  {x}^{2} (2x -  {x}^{2}  - 1 +  {x}^{2} ) = 0 \\  =>  {x}^{2} (2x - 1) = 0 \\  => x = 0 \:  \: or \:  \: x =  \frac{1}{2}

Hence, x = 0 or x = 1/2.

Similar questions