Math, asked by terabaapbc69, 1 year ago

Sin^-1 x+ sin^-2x=π/3​


sivaprasath: now, here I g
sivaprasath: go*

Answers

Answered by sivaprasath
2

Answer:

x=\sqrt{\frac{3}{28}}

Step-by-step explanation:

Given :

Find x, if

sin^{-1}x+sin^{-1}2x=\frac{\pi}{3}

Solution :

sin^{-1}x+sin^{-1}2x=\frac{\pi}{3}

sin^{-1}2x=\frac{\pi}{3} -sin^{-1}x

By taking sin functions, both the sides,.

2x= sin(\frac{\pi}{3} - sin^{-1}x) (here, sin^{-1}x) is treated as an angle θ)

By using ,

sin (A - B) = sin A cos B - cos A sin B

2x=sin\frac{\pi}{3}cos(sin^{-1}x) - cos\frac{\pi}{3}sin(sin^{-1}x)

2x=\frac{\sqrt{3}}{2}[\sqrt{ 1- sin^2(sin^{-1}x)}] - \frac{1}{2}(x)

2x=\frac{\sqrt{3}}{2}[\sqrt{ 1- x^2}] - \frac{x}{2}

2x+ \frac{x}{2}=\frac{\sqrt{3}}{2}[\sqrt{ 1- x^2}]

\frac{5x}{2}=\frac{\sqrt{3}}{2}[\sqrt{1- x^2}]

5x=\sqrt{3}[\sqrt{ 1- x^2}]

By squaring both the sides,

We get,

(5x)^2=(\sqrt{3}[\sqrt{ 1- x^2}])^2

25x^2 = 3(1-x^2)

25x^2 = 3-3x^2

25x^2+3x^2= 3

28x^2= 3

x^2=\frac{3}{28}

x=±\sqrt{\frac{3}{28}}

But, Only positive value of x satisfy the given equation,

Hence,

x=\sqrt{\frac{3}{28}}


sivaprasath: Mark as Brainliest
Similar questions