sin 10° + sin 20° + sin 40° + sin 50º = sin 70° + sin 80°.
Answers
Answered by
5
Step-by-step explanation:
L.H.S. = 2sin15cos5+2sin45cos5 [ using sin C+sin D= 2sin C+D/2 cos C-D/2 for sin10+sin20 & sin40+sin50]
= 2cos5 (sin15+sin45)
= 2cos5 (2sin30cos15) [ using sin C+sin D= 2sin C+D/2 cos C-D/2 ]
= 2cos5 (2 x 1/2 x cos15)
= 2cos5 cos15
R.H.S. = sin70+sin80
= 2sin75cos5 [ using sin C+sin D= 2sin C+D/2 cos C-D/2 ]
sin75 = sin(90-15) = cos 15
L.H.S = 2cos5 cos15
R.H.S. = 2cos15 cos5 [ since, sin75 = cos15 ]
Answered by
4
Given as sin 50° + sin 10° = cos 20°
Let us consider the LHS sin 50° + sin 10°
On using the formula,
sin A + sin B = 2 sin (A + B)/2 cos (A - B)/2
sin 50° + sin 10° = 2 sin (50° + 10°)/2 cos (50° – 10°)
= 2 sin 60°/2 cos 40°/2
= 2 sin 30° cos 20
° = 2 × 1/2 × cos 20°
= cos 20°
= RHS
Thus proved
Similar questions