Math, asked by UtsavPaneru, 4 months ago

sin 100° · sin 120° · sin 140°. sin 160° (No calculator)
Step by step please or please tell how to.do​

Answers

Answered by ItzVenomKingXx
5

\bf\,sin\,100^{\circ}=sin(90^{\circ}+10^{\circ})=cos\,10^{\circ}sin100

\bf\,sin\,120^{\circ}=sin(90^{\circ}

\bf\,sin\,140^{\circ}=sin(90^{\circ}+50^{\circ})=cos\,50^{\circ}sin140

\bf\,sin\,160^{\circ}=sin(90^{\circ}+70^{\circ})=cos\,70^{\circ}sin160

\text{Now,}

sin\,100^{\circ}\;sin\,120^{\circ}\;sin\,140^{\circ}\;sin\,160^{\circ}sin100

=cos\,10^{\circ}(\frac{\sqrt3}{2})cos\,50^{\circ}\;cos\,70^{\circ}

=\frac{\sqrt3}{2}[cos\,50^{\circ}cos\,10^{\circ}\;cos\,70^{\circ}]

=\frac{\sqrt3}{2}[cos\,(60^{\circ}-10^{\circ})cos\,10^{\circ}\;cos\,(60^{\circ}+10^{\circ})]

\text{We know that,}

\boxed{\bf\,cos(60-A)\;cosA\;cos(60+A)=\frac{1}{4}cos\,3A}}

=\frac{\sqrt3}{2}[\frac{1}{4}cos3(10^{\circ})]

=\frac{\sqrt3}{2}[\frac{1}{4}cos30^{\circ}]

=\frac{\sqrt3}{2}[\frac{1}{4}\frac{\sqrt3}{2}]

=\frac{3}{16}

\therefore\bf\,sin\,100^{\circ}\;sin\,120^{\circ}\;sin\,140^{\circ}\;sin\,160^{\circ}=\frac{3}{16}

Similar questions