Math, asked by lakhanparmar1315, 2 days ago

Sin(-110°)+tan(290°)/cot(200°)+cos(340°)

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \dfrac{sin( - 110\degree ) + tan290\degree }{cot200\degree  + cos340\degree } \\

Let we evaluate each term in to angle between 0° and 90°.

Consider,

\rm \: sin( - 110\degree ) \\

We know,

\boxed{\tt{ sin( - x) \:  =  \:  -  \: sinx \: }} \\

So, using this, we get

\rm \:  =  \:  -  \: sin110\degree  \\

\rm \:  =  \:  -  \: sin(90\degree + 20\degree )  \\

We know,

\boxed{\tt{ sin(90\degree  + x) = cosx \: }} \\

So, using this, we get

\rm \:  =  \:  -  \: cos20\degree  \\

So,

\rm\implies \:\boxed{\tt{  \: sin( - 110\degree ) =  - cos20\degree  \: }} \\

Now, Consider

\rm \: tan290\degree  \\

\rm \:  =  \: tan(270\degree + 20\degree ) \\

We know,

\boxed{\tt{  \: tan(270\degree  + x) =  - cotx \: }} \\

So, using this identity, we get

\rm \:  =  \:  -  \: cot20\degree  \\

So,

\rm\implies \:\boxed{\tt{ tan290\degree  \:  =  \:  -  \: cot20\degree  \: }} \\

Now, Consider

\rm \: cot200\degree  \\

\rm \:  =  \: cot(180\degree  + 20\degree ) \\

We know,

\boxed{\tt{ cot(180\degree  + x) = cotx \: }} \\

So, using this result, we get

\rm \:  =  \: cot20\degree  \\

So,

\rm\implies \:\boxed{\tt{  \: cot200\degree  \:  =  \: cot20\degree  \: }} \\

Now, Consider

\rm \: cos340\degree  \\

\rm \:  =  \: cos(360\degree  - 20\degree ) \\

We know,

\boxed{\tt{  \: cos(360\degree  - x) = cosx \: }} \\

So, using this, we get

\rm \:  =  \: cos20\degree  \\

So,

\rm\implies \:\boxed{\tt{  \: cos340\degree  \:  =  \: cos20\degree  \: }} \\

So, Now, Consider the given expression,

\rm \: \dfrac{sin( - 110\degree ) + tan290\degree }{cot200\degree  + cos340\degree } \\

\rm \:  =  \: \dfrac{ - cos20\degree  - cot20\degree }{cot20\degree  + cos20\degree }  \\

\rm \:  =  \:  -  \: \dfrac{cos20\degree +  cot20\degree }{cot20\degree  + cos20\degree }  \\

\rm \:  =  \:  -  \: \dfrac{cot20\degree +  cos20\degree }{cot20\degree  + cos20\degree }  \\

\rm \:  =  \:  -  \: 1 \\

Hence,

\rm\implies \: \: \boxed{\tt{  \:  \dfrac{sin( - 110\degree ) + tan290\degree }{cot200\degree  + cos340\degree } =  -  \: 1 \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

Sign of Trigonometric ratios in Quadrants

sin (90°-θ)  =  cos θ

cos (90°-θ)  =  sin θ

tan (90°-θ)  =  cot θ

csc (90°-θ)  =  sec θ

sec (90°-θ)  =  csc θ

cot (90°-θ)  =  tan θ

sin (90°+θ)  =  cos θ

cos (90°+θ)  =  - sin θ

tan (90°+θ)  =  - cot θ

csc (90°+θ)  =  sec θ

sec (90°+θ)  =  - csc θ

cot (90°+θ)  =  - tan θ

sin (180°-θ)  =  sin θ

cos (180°-θ)  =  - cos θ

tan (180°-θ)  =  - tan θ

csc (180°-θ)  =  csc θ

sec (180°-θ)  =  - sec θ

cot (180°-θ)  =  - cot θ

sin (180°+θ)  =  - sin θ

cos (180°+θ)  =  - cos θ

tan (180°+θ)  =  tan θ

csc (180°+θ)  =  - csc θ

sec (180°+θ)  =  - sec θ

cot (180°+θ)  =  cot θ

sin (270°-θ)  =  - cos θ

cos (270°-θ)  =  - sin θ

tan (270°-θ)  =  cot θ

csc (270°-θ)  =  - sec θ

sec (270°-θ)  =  - csc θ

cot (270°-θ)  =  tan θ

sin (270°+θ)  =  - cos θ

cos (270°+θ)  =  sin θ

tan (270°+θ)  =  - cot θ

csc (270°+θ)  =  - sec θ

sec (270°+θ)  =  cos θ

cot (270°+θ)  =  - tan θ

sin (360°-θ)  =  - sin θ

cos (360°-θ)  = cos  θ

tan (360°-θ)  =  - tan θ

csc (360°-θ)  = - csc θ

sec (360°-θ)  =  sec θ

cot (360°-θ)  =  - cot θ

Similar questions