sin(-110°)+tan290°/cot200°+cos340°=1
Answers
Answer:
Given expression is
Let we evaluate each term in to angle between 0° and 90°.
Consider,
We know,
So, using this, we get
We know,
So, using this, we get
So,
Now, Consider
We know,
So, using this identity, we get
So,
Now, Consider
We know,
So, using this result, we get
So,
Now, Consider
We know,
So, using this, we get
So,
So, Now, Consider the given expression,
Hence,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
ADDITIONAL INFORMATION
Sign of Trigonometric ratios in Quadrants
sin (90°-θ) = cos θ
cos (90°-θ) = sin θ
tan (90°-θ) = cot θ
csc (90°-θ) = sec θ
sec (90°-θ) = csc θ
cot (90°-θ) = tan θ
sin (90°+θ) = cos θ
cos (90°+θ) = - sin θ
tan (90°+θ) = - cot θ
csc (90°+θ) = sec θ
sec (90°+θ) = - csc θ
cot (90°+θ) = - tan θ
sin (180°-θ) = sin θ
cos (180°-θ) = - cos θ
tan (180°-θ) = - tan θ
csc (180°-θ) = csc θ
sec (180°-θ) = - sec θ
cot (180°-θ) = - cot θ
sin (180°+θ) = - sin θ
cos (180°+θ) = - cos θ
tan (180°+θ) = tan θ
csc (180°+θ) = - csc θ
sec (180°+θ) = - sec θ
cot (180°+θ) = cot θ
sin (270°-θ) = - cos θ
cos (270°-θ) = - sin θ
tan (270°-θ) = cot θ
csc (270°-θ) = - sec θ
sec (270°-θ) = - csc θ
cot (270°-θ) = tan θ
sin (270°+θ) = - cos θ
cos (270°+θ) = sin θ
tan (270°+θ) = - cot θ
csc (270°+θ) = - sec θ
sec (270°+θ) = cos θ
cot (270°+θ) = - tan θ
sin (360°-θ) = - sin θ
cos (360°-θ) = cos θ
tan (360°-θ) = - tan θ
csc (360°-θ) = - csc θ
sec (360°-θ) = sec θ
cot (360°-θ) = - cot θ
Step-by-step explanation: