Math, asked by GJD, 11 months ago

sin 11A sin A + sin 7A sin 3A
cos 11A sin A + cos 7A sin 3A
= tan 8A.​

Answers

Answered by syamyelleti
8

Answer:

sin 3A, 3A/2

Step-by-step explanation:

2 sin 11A sinA+ 2 sinA sin3A/ 2 cos 11A sinA+2 cos 7A sin 3A

=cos 10A -- cos 12A + cos 4A- cos 10A/ sin 12A - sin 10A + sin 10A - sin 4A

= cos 4A -- cos 12A/ sin 12A - sin 4A

= sin (4A+12A/2) sin (12A-4A/2)/ 2cos (12A+4A/2) sin (12A-4A/2)

= 2 sin (16A/2) sin (8A/2) / 2 cos (16A/2) sin (8A/2)

= 2 sin 8A. sin 4A / 2 cos 8A. sin 4A

= sin 8A/ cos 8A

= tan8A

Answered by Anonymous
52

To prove :

 \sf\frac{  \sin11A. \sin A +  \sin7A. \sin3 A}{\cos11A. \sin A +  \cos7A. \sin3 A}=\tan8A\\

Proof:

On Solving L.H.S.

 \sf\implies \frac{  \sin11A. \sin A +  \sin7A. \sin3 A}{\cos11A. \sin A +  \cos7A. \sin3 A} \\  \\\sf\implies\frac{ 2 \sin11A. \sin A +  2\sin7A. \sin3 A}{2\cos11A. \sin A + 2 \cos7A. \sin3 A} \\  \\\sf\implies\frac{( \cos10A - \cos12A) + ( \cos4A -  \cos10A}{(\sin12A -  \sin10A) + ( \sin10A -  \sin4A}  \\  \\ \sf\implies\frac{ \cos4A - \cos12A}{ \sin12A -  \sin4A} \\  \\\sf\implies \frac{2 \sin \frac{4A + 12A}{2} \sin \frac{12A - 4A}{2}}{2 \cos \frac{12A + 4A}{2} \sin \frac{12A - 4A}{2}} \\  \\ \sf\implies\frac{ \sin8A. \sin4A}{ \cos8A. \sin4A} \\  \\  \sf\implies\tan8A = R.H.S

Similar questions