Math, asked by swarnenduhaldarfrom, 1 year ago

Sin 11A Sin A+Sin 7A Sin 3ACos 11A Sin A+Cos 7A Sin 3A = tan 8A​

Answers

Answered by adityaaryaas
2

Answer:

Please check the attached images for

Step-by-step explanation:

Attachments:
Answered by guptasingh4564
1

Hence Proved.

Step-by-step explanation:

Given,

Proved \frac{sin11A.sinA+sin7A.sin3A}{cos11A.sinA+cos7A.sin3A} =tan8A

LHS:

\frac{sin11A.sinA+sin7A.sin3A}{cos11A.sinA+cos7A.sin3A}

=\frac{2sin11A.sinA+2sin7A.sin3A}{2cos11A.sinA+2cos7A.sin3A} (Multiplying by 2 on numerator and denominator)

=\frac{cos10A-cos12A+cos4A-cos10A}{sin12A-sin10A+sin10A-sin4A} (Using trigonometry formulas)

=\frac{cos4A-cos12A}{sin12A-sin4A}

=\frac{-2sin8A.sin(-4A)}{2cos8A.sin4A} (Using trigonometry formulas)

=\frac{sin8A.sin4A}{cos8A.sin4A} (∵ sin(-A)=-sinA)

=\frac{sin8A}{cos8A}

=tan8A

=RHS

Hence Proved.

Similar questions