Math, asked by deeparathod2404, 10 months ago

Sin 12° + cos 12°/sin 12° - Cos12°

Answers

Answered by Anonymous
8

AnswEr :

To find the value of;

 \sf \:  \dfrac{sin12 + cos12}{sin12 - cos12}

Multiplying and dividing by sin12 + cos12.

 \longrightarrow \sf \:  \dfrac{sin12 + cos12}{sin12 - cos12}  \times  \dfrac{sin12 + cos12}{sin12  +  cos12}  \\  \\  \longrightarrow \:  \sf \:  \dfrac{(sin12 + cos12) {}^{2} }{(sin12 + cos12)(sin12 - cos12)}  \\  \\  \longrightarrow \:  \sf \:  \dfrac{ {sin}^{2}12 + cos {}^{2}12 + 2sin12.cos12  }{ {sin}^{2}12 -  {cos}^{2} 12 }  \\  \\  \longrightarrow \sf \:  \dfrac{1 + sin2(12)}{ -  \: cos2(12)}  \\  \\  \longrightarrow \:  \sf \:  -  \dfrac{1}{cos24}  -  \dfrac{sin24}{cos24}  \\  \\  \longrightarrow \:  \sf \:  - (sec24 + tan24)

Now,

  • sec24 ≈ 2.36
  • tan24 ≈ - 2.18

Thus,

 \longrightarrow \sf \:  - (2.36 - 2.18) \\  \\  \longrightarrow \sf - 0.18

The value of above expression is - 0.18

Identifies UseD :

  • sin²∅ + cos²∅ = 1

  • cos²∅ - sin²∅ = cos2∅

  • 2sin∅cos∅ = sin2∅
Similar questions