Math, asked by pawan8596, 1 year ago

sin 15=root3-1/2root2​

Attachments:

Answers

Answered by Anonymous
11

So we have to Prove that

 Sin15^{\circ} = \dfrac{\sqrt{3} -1}{2\sqrt{2}}

We will use this Identity in Proof :-

• Sin(a - b) = Sina • Cosb - Sinb •Cosa

→ As 15° = 45 - 30

Values To be used :-

\bullet Sin 45^{\circ} = \dfrac{1}{\sqrt{2}} = Cos 45^{\circ}

 \bullet Sin 30^{\circ} = \dfrac{1}{2}

\bullet Cos 30^{\circ} = \dfrac{\sqrt{3}}{2}

Then

 Sin(15^{\circ}) = Sin(45 -30)

\boxed{\tiny{\implies Sin(15^{\circ}) = Sin(45^{\circ}) \times Cos(30^{\circ}) - Sin(30^{\circ}) \times Cos(45^{\circ})}}

 \boxed{\small{\implies \dfrac{\sqrt{3} -1}{2\sqrt{2}}= \left(\dfrac{1}{\sqrt{2}} \times \dfrac{\sqrt{3}}{2}\right) - \left(\dfrac{1}{2} \times \dfrac{1}{\sqrt{2}}\right)}}

\boxed{ \implies \dfrac{\sqrt{3} -1}{2\sqrt{2}} =\left( \dfrac{\sqrt{3}}{2\sqrt{2}} - \dfrac{1}{2\sqrt{2}}\right)}

 \boxed{\dfrac{\sqrt{3} -1}{2\sqrt{2}} = \dfrac{\sqrt{3} -1}{2\sqrt{2}}}

So as LHS = RHS

Hence Proved

Similar questions