Math, asked by aaratibhondkar, 5 months ago

Sin (150)- tan (315) +cos (300) +sec ^2 (360)

Answers

Answered by amazingkurl
12

Sin (150)- tan (315) +cos (300) + sec ^2 (360) = 2

Step-by-step explanation:

Sin (150) = Sin (180 -30⁰) = sin 30⁰ =1/2

tan (315) = tan (360-45⁰)= - tan 45⁰ = -1

cos (300) = cos (360- 60⁰) = cos60⁰ =1/2

sec (360) = 0

sec ^2 (360) =0

now,

Sin (150)- tan (315) +cos (300) +sec ^2 (360)

 \frac{1}{2}  +1 +  \frac{1}{2}  + 0

= 1+1

=2

Answered by payalchatterje
3

Answer:

Required value of the given term is 2.

Step-by-step explanation:

Given,

 \sin( {150}^{o} )  -  \tan( {315}^{o} ) +  \cos( {300}^{o} )   {sec}^{2} ( {360}^{o} )

Now,

 \sin( {150}^{o} )  \\  =  \sin( {180}^{o} -  {30}^{o}  )   \\ =  \sin( {30}^{o} )  \\  =  \frac{1}{2}

and

 \tan( {315}^{o} )  \\  =  \tan( {360}^{o} -  {45}^{o}  )   \\ =  -\tan( {45}^{o})  \\  =  - 1

and

 \cos( {300}^{o} )  \\  =  \cos( {360}^{o} -  {60}^{o}  )  \\  =  \cos( {60}^{o}) \\  =  \frac{1}{2}

and

 \sec( {360}^{o} )  = 0 \\  {sec}^{2} {360}^{o}   = 0

Now,

 \sin( {150}^{o} )  -  \tan( {315}^{o} ) +  \cos( {300}^{o} )   {sec}^{2} ( {360}^{o} ) \\  =  \frac{1}{2}  + 1 +  \frac{1}{2}  + 0 \\  = 1 + 1 \\  = 2

This is a problem of Trigonometry.

Some important formulas of Trigonometry formula:

sin(x)  =  \cos(\frac{\pi}{2}  - x)  \\  \tan(x)  =  \cot(\frac{\pi}{2}  - x)  \\  \sec(x)  =  \csc(\frac{\pi}{2}  - x)  \\ \cos(x)  =  \sin(\frac{\pi}{2}  - x)  \\ \cot(x)  =  \tan(\frac{\pi}{2}  - x)  \\ \csc(x)  =  \sec(\frac{\pi}{2}  - x)

know more about Trigonometry,

https://brainly.in/question/8632966

https://brainly.in/question/11371684

#SPJ2

Similar questions