sin 160°cos110°+sin 250°cos340°+tan 110tan 340°
Answers
Answered by
1
Answer:
0
please like and rate
Step-by-step explanation:
sin(A+B)=sinAcosB+cosAsinB
CotA=\frac{1}{tanA}CotA=
tanA
1
Now
sin160 = sin(90+70) = cos70
cos110= cos(90+20)= - sin20
sin250 = sin(180+70)= - sin70
cos340 = cos(360-20)= cos20
tan110 = tan(90+20)= - cot20
tan340 = tan(360-20)= - tan20
Now,
sin160\:cos110+sin250\:cos340+tan110\:tan340sin160cos110+sin250cos340+tan110tan340
=cos70\:(-sin20)+(-sin70)\:cos20+(-cot20)\:(-tan20)=cos70(−sin20)+(−sin70)cos20+(−cot20)(−tan20)
=-cos70\:sin20-sin70\:cos20+cot20\:tan20=−cos70sin20−sin70cos20+cot20tan20
=-(cos70\:sin20+sin70\:cos20)+\frac{1}{tan20}tan20=−(cos70sin20+sin70cos20)+
tan20
1
tan20
=-(sin70\:cos20+cos70\:sin20)+1=−(sin70cos20+cos70sin20)+1
=-sin(70+20)+1=−sin(70+20)+1
=-sin90+1=−sin90+1
=-1+1=−1+1
=0=0
Similar questions