Sin π/18 Sin5π/6 sin 5π/18 Sin 7π/18 =1/16
Answers
||✪✪ CORRECT QUESTION ✪✪||
- Prove that Sin π/18 × Sin3π/18 × sin 5π/18 × Sin7π/18 = 1/16
|| ✰✰ ANSWER ✰✰ ||
We know that ,
π/18 = 10° , 3π/18 = 30° , 5π/18 = 50° and 7π/18 = 70°..
So,
in LHS we have ,
➪ sin10° × sin30° × sin50° × sin70°
We know that sin30° = 1/2 .
______________________
So, Lets Try to Solve Rest part :-
➺ sin 10 × sin 50 × sin 70
➺ ( sin 10 × sin 50 ) × sin 70
using [ sinA × sinB = (-1/2) { cos(A+B) - cos(A-B) } ] we get
➺ (-1/2) [ cos (10+50) - cos (50-10) ] × sin 70
➺ (-1/2) [ cos 60 - cos 40 ] × sin 70
Putting cos60° = 1/2 Now,
➺ (-1/2) [ 1/2 - cos 40 ] × sin 70
➺ (-1/4) [ 1 - 2cos 40 ] × sin 70
➺ (-1/4) [ sin 70 - 2 cos 40 × sin 70 ]
Using cosA = Sin(90-A) now,
➺ (-1/4) [ sin 70 - 2 sin( 90 - 40 ) × sin 70 ]
➺ (-1/4) [ sin 70 - 2 sin 50 × sin 70 ]
using 2SinA×SinB = (-1){ cos(A+B) - cos(A-B) }
➺ (-1/4) [ sin 70 + ( cos( 50 + 70 ) - cos( 70 - 50) ) ]
➺ (-1/4) [ sin 70 + ( cos 120 - cos 20 ) ]
Again , using cosA = Sin(90-A) now
➺ (-1/4) [ sin 70 + ( cos 120 - sin ( 90 - 20 ) ) ]
➺ (-1/4) [ sin 70 + ( cos 120 - sin 70 ) ]
➺ (-1/4) [ sin 70 + cos 120 - sin 70 ]
➺ (-1/4) [ cos 120 ]
Putting cos120° = (-1/2) now,
➺ (-1/4) × ( -1/2 )
➺ 1/8
_________________
Now, In LHS, we have ,
☛ sin30° × [ sin10° × sin50° × sin70° ]
☛ 1/2 × 1/8
☛ 1/16 = ❦❦ RHS ❦❦
✪✪ Hence Proved ✪✪
QUESTION :- Prove that Sin π/18 × Sin3π/18 × sin 5π/18 × Sin7π/18 = 1/16
ANSWER :-
π/18 = 10° , 3π/18 = 30° , 5π/18 = 50° and 7π/18 = 70°..
→ sin30° * sin10° * sin50° * sin70°
as sin30° = 1/2 , solving rest ,
= sin10° * sin50° * sin70°
= (-1/2) (cos60 - cos40)sin70
= (-1/2) (1/2 - cos40)sin70
= (-1/4) (1 - 2cos40)sin70
= (-1/4)(sin70-2cos40sin70)
= (-1/4)(sin70-2sin50sin70)
= (-1/4)(sin70+(cos120-cos20)
= (-1/4)(sin70-cos20-1/2)
= (-1/4)(sin70-sin70-1/2)
= (-1/4)(-1/2)
= 1/8 .
So,
sin30° * sin10° * sin50° * sin70°
→ 1/2 * 1/8