sin (180° + x). cos (270° - x) + cos (180° - x). sin (270° + x) = 1
Answers
To prove:
Solution:
Let us consider the Left Hand Side first.
will be the angle in 3rd quadrant, sine is negative in 3rd quadrant so result will be negative.
will be the angle in 3rd quadrant, cosine is negative in 3rd quadrant so result will be negative.
will be the angle in 2nd quadrant, cosine is negative in 2nd quadrant so result will be negative.
will be the angle in 4th quadrant, sine is negative in 4th quadrant so result will be negative.
Putting the values in LHS:
Hence Proved that LHS = RHS
OR
Given:
sin (180° + x). cos (270° - x) + cos (180° - x). sin (270° + x) = 1
To find:
To prove: sin (180° + x). cos (270° - x) + cos (180° - x). sin (270° + x) = 1
Solution:
From given, we have,
sin (180° + x). cos (270° - x) + cos (180° - x). sin (270° + x) = 1
Now consider L.H.S:
sin (180° + x). cos (270° - x) + cos (180° - x). sin (270° + x)
we use the properties:
sin (180° + x) = -sin x
cos (270° - x) = -sin x
cos (180° - x) = -cos x
sin (270° + x) = -cos x
so, we get,
= (-sin x) × (-sin x) + (-cos x) (-cos x)
= sin² x + cos² x
= 1
= R.H.S
Hence proved.