Math, asked by mukul6820, 11 months ago

sin^-1x + sin^-1(2x) = π/3​

Answers

Answered by mamtasompura
0

Answer:

tpgigpgjosyidudxgjmlhlhihvhgotidtyit5rs377e42636q37e68rioyfgippicipupgpvjlkivfioidye687raeutr8eyypupuiphodogiputyoitupigiofjddytuffuopgijcjgklkk

Answered by himanshubaliyan391
1

Answer:

Step-by-step explanation:

sin^-1x+sin^-1 2x =π/3

Solution :

Let's sin^-1x=A and sin^-1 2x =B

Then , sinA=x and sinB = 2x

Because,A+B =π/3

B=π/3-A

Putting sin both sides

SinB=Sin(π/3-A)

SinB= sinπ/3cosA-cosπ/3sinA

SinB=√3/2×cosA- 1/2 sinA

SinB=√3/2×cos(sin^-1x)-1/2sin(sin^-1x)

Sin(sin^-1 2x)= √3/2√(1-sin^2sin^-1x)-1/2×X

2x =√3/2√(1-x^2)-1/2×x

4x+x=√3√(1-x^2)

25x^2=3-3x^2

28x^2=3

x^2=3/28

x=√3/(2√7)

ANSWER

Similar questions