Math, asked by Khalil8972, 1 year ago

sin-1x + sin-1y = pi/2... then find dy/dx

Answers

Answered by odedarahitesh6p7je14
2
Hii hope it helps you
Attachments:
Answered by priyankad189owcwwe
0

Answer:

-\frac{x}{y}

Step-by-step explanation:

\frac{d(sin^{-1} x)}{dx} =\frac{1}{\sqrt{1-x^{2} } }

sin^{-1} x-sin^{-1} y=\frac{\pi}{2}

differentiating with respect to x.

\frac{1}{\sqrt{1-x^{2} } }*\frac{dx}{dx}  -\frac{1}{\sqrt{1-y^{2} } }*\frac{dy}{dx} =0

\frac{dy}{dx} =-\frac{\sqrt{1-y^{2} } }{\sqrt{1-x^2} } --------1

as, sin^{-1}x-sin^{-1}y=\frac{\pi}{2}

sin^{-1}x=\frac{\pi}{2}-sin^{-1}y

using property of inverse,\frac{\pi}{2}-sin^{-1}y=cos^{-1}y

sin^{-1}x=cos^{-1}y

and sin^{-1}x=cos^{-1}\sqrt{1-x^{2}}

cos^{-1}\sqrt{1-x^{2}}=cos^{-1}y

\sqrt{1-x^{2}} =y\sqrt{1-y^{2}} =x

threfore,\frac{dy}{dx} =-\frac{\sqrt{1-y^{2} } }{\sqrt{1-x^2} }  becomes,

\frac{dy}{dx} =-\frac{x}{y}

Similar questions