Math, asked by thirumalesh1, 2 months ago

sin^2 ∅ + 1/1+tan^2∅​

Answers

Answered by Anonymous
1

Answer:

1

Step-by-step explanation:

 { \sin }^{2}  +  \frac{1}{1 +  { \tan }^{2} }

 { \sin }^{2}  +  \frac{1}{ { \sec}^{2}}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ({ \tan}^{2} + 1 =  { \sec }^{2})

{ \sin }^{2}  +   { \cos}^{2}  = 1 \:  \:  \:  \:  \:  \: (   { \cos}^{2} =  \frac{1}{ { \sec }^{2} } )

 = 1

Hope you will like it,

Answered by kailashmannem
41

 \Large{\bf{\green{\mathfrak{\dag{\underline{\underline{Given:-}}}}}}}

  •  \sf sin^2 A \: + \: \dfrac{1}{1 \: + \: tan^2 A}

\Large{\bf{\red{\mathfrak{\dag{\underline{\underline{Solution:-}}}}}}}

  •  \sf sin^2 A \: + \: \dfrac{1}{1 \: + \: tan^2 A}

We know that,

  • 1 + tan² A = sec² A

Substituting the values,

  •  \sf sin^2 A \: + \: \dfrac{1}{sec^2 A}

  •  \sf sin^2 A \: + \: \Big(\dfrac{1}{sec \: A}\Big)^2

We know that,

  • 1 / sec A = cos A

Substituting the values,

  • sin² A + (cos A)²

  • sin² A + cos² A

We know that,

  • sin² A + cos² A = 1

Therefore,

  •  \boxed{\purple{\sf sin^2 A \: + \: \dfrac{1}{1 \: + \: tan^2 A} \: = \: 1}}
Similar questions