Math, asked by Ghoshrupankar02, 1 year ago

Sin^2 1°+sin^2 3°+sin^2 5°+..........+sin^2 85°+sin87°^2+sin^2 89°

Answers

Answered by Anonymous
3

Answer:

\bold\red{value=\frac{45}{2}}

Step-by-step explanation:

Given,

 { \sin }^{2} 1 +  { \sin }^{2} 3+ ...... +  { \sin }^{2} 87 +  { \sin}^{2} 89

Now ,

we know that,

 \sin( \alpha )  =  \cos(90 -  \alpha )

Therefore,

we get

 =  { \sin}^{2} 1 +  { \sin}^{2} 3 + ....... +  { \cos }^{2}3 +  { \cos }^{2}  1 \\  \\  = ( { \sin }^{2} 1 +  { \cos }^{2} 1) + ( { \sin }^{2}3 +  { \cos }^{2}  3) + ..... +  { \sin }^{2} 45

But,

we know that,

 { \sin }^{2}  \alpha  +  { \cos}^{2}  \alpha  = 1

Therefore,

we get,

 = 1 + 1 + ......... \: upto \: 22 \: terms +  { \sin}^{2} 45 \\  \\

But,

 \sin(45)  =  \frac{1}{ \sqrt{2} }  \\  \\  =  >  { \sin }^{2} 45 =  \frac{1}{2}

Putting the values,

we get,

 = 1 \times 22 +  \frac{1}{2}  \\  \\  = 22 +  \frac{1}{2}  \\  \\  =  \frac{45}{2}

Hence,

\bold{value=\frac{45}{2}}

Similar questions