Sin^2 1°+sin^2 3°+sin2^5°+........+sin^2 85°+sin^2 87°+sin^2 89° =?
Answers
=Sin²1° + sin² 3° + sin² 5° +........ + sin² 85° + sin² 87° + sin² 89°
= [sin (90°-89°)]² + [sin (90°-87°)]² + [sin (90°-85°)]² +.....+sin²45°+...... + sin² 85° + sin² 87° + sin² 89°
= cos²89°+ cos²87°+ cos²85° +....... + sin²45°+....... +sin² 85° + sin² 87° + sin² 89°
Since sin²A + cos² A = 1
= cos²89° + sin² 89° + cos²87°+ sin² 87°+ cos²85°+ sin² 85°+....... +sin²45°
= 1 + 1 +1 +........ +1/2
Since there are 45 terms in the series,
There are 13 pairs and 1 unpaired.
Hence the sum is:
= 13 + 1/2
=26/2 + 1/2
= 27/2
Answer: 45/2
Step-by-step explanation:
Sin^2 1° + sin^2 89° = {cos (90-89°} ^2 + sin^2 89° = cos^2 89° + sin^2 89° = 1
Simultaneously there are 45 terms in total from 1 to 89, so 22 pairs of cos and sin making value of 22, and 1 unpaired that is sin^2 45° = 1/2.
So the ans is 22+ 1/2 = 45/2..
Thankyou