Math, asked by Sudais72462, 11 months ago

Sin^2 15° + sin^2 30° + sin^2 45° +sin^2 60° +sin^2 75° =

Answers

Answered by raushan6198
28

Step-by-step explanation:

Sin^2 15° +sin^2 (90-60) +sin^ 45° +sin^2 60° +sin^2 (90-15)

=[ sin^2 15° +cos^2 60° +sin^2 45°+sin^2 60° +cos^2 15°]

={sin^2 15° +cos^2 15°} +{sin^2 60 +cos^2 60} +sin^45°

 = 1 + 1 +  \frac{1}{ \sqrt{2} }  \\  = 2 \:  +  \frac{1}{ \sqrt{2} } ans

Answered by pragyakirti12345
3

Answer: sin^2 15° + sin^2 30° + sin^2 45° +sin^2 60° +sin^2 75° = 2.707

Step-by-step explanation:

Given : Sin^2 15° + sin^2 30° + sin^2 45° +sin^2 60° +sin^2 75°

To Find : The value of Sin^2 15° + sin^2 30° + sin^2 45° +sin^2 60° +sin^2 75°

Solution :

We know that, sin²a + sin²b = 1, where a + b = 90°.

In the question , it is given that, Sin^2 15° + sin^2 30° + sin^2 45° +sin^2 60° +sin^2 75°

⇒ sin^2 15° + sin^2 30° + sin^2 45° +sin^2 60° +sin^2 75°

⇒ ( sin² 15° + sin² 75° ) + (sin² 30° + sin² 60°) + sin² 45°

∵ sin²a + sin²b = 1, where a + b = 90°.

⇒ sin² 90° + sin² 90° + sin² 45°

= 1 + 1 + \frac{1}{\sqrt{2} }

= 2 + 0.707

= 2.707

______________________________________________________

Related Links :

What is the trigonometric value of sin 45?

https://brainly.in/question/49919488

Find the value of sin (45° +theta ) - cos (45° - theta).

https://brainly.in/question/12207597

#SPJ2

Similar questions