Sin^2 15° + sin^2 30° + sin^2 45° +sin^2 60° +sin^2 75° =
Answers
Step-by-step explanation:
Sin^2 15° +sin^2 (90-60) +sin^ 45° +sin^2 60° +sin^2 (90-15)
=[ sin^2 15° +cos^2 60° +sin^2 45°+sin^2 60° +cos^2 15°]
={sin^2 15° +cos^2 15°} +{sin^2 60 +cos^2 60} +sin^45°
Answer: sin^2 15° + sin^2 30° + sin^2 45° +sin^2 60° +sin^2 75° = 2.707
Step-by-step explanation:
Given : Sin^2 15° + sin^2 30° + sin^2 45° +sin^2 60° +sin^2 75°
To Find : The value of Sin^2 15° + sin^2 30° + sin^2 45° +sin^2 60° +sin^2 75°
Solution :
We know that, sin²a + sin²b = 1, where a + b = 90°.
In the question , it is given that, Sin^2 15° + sin^2 30° + sin^2 45° +sin^2 60° +sin^2 75°
⇒ sin^2 15° + sin^2 30° + sin^2 45° +sin^2 60° +sin^2 75°
⇒ ( sin² 15° + sin² 75° ) + (sin² 30° + sin² 60°) + sin² 45°
∵ sin²a + sin²b = 1, where a + b = 90°.
⇒ sin² 90° + sin² 90° + sin² 45°
=
=
= 2.707
______________________________________________________
Related Links :
What is the trigonometric value of sin 45?
https://brainly.in/question/49919488
Find the value of sin (45° +theta ) - cos (45° - theta).
https://brainly.in/question/12207597
#SPJ2