Math, asked by lakshmi1315, 1 year ago

sin^2 160°+sin ^2 140°+sin^2 100°​

Answers

Answered by rahman786khalilu
15

sin formulae and get answer

Attachments:
Answered by talasilavijaya
3

Answer:

sin^2 160+sin ^2 140+sin^{2} 100=\frac{3}{2}

Step-by-step explanation:

Given sin^2 160+sin ^2 140+sin^{2} 100  

Using trigonometric identities,

sin^2 160+sin ^2 140+sin^{2} 100

                  =sin^{2} (180-20)+sin ^{2} (180-40)+sin^{2} (180-80)

                  =sin^{2} 20+sin ^{2} 40+sin^{2} 80

                                                                                               \because sin^{2}\theta =\frac{1-cos2\theta}{2}

                  =\frac{1-cos40}{2} +\frac{1-cos80}{2}+ \frac{1-cos160}{2}

                  =\frac{1}{2}-\frac{cos40}{2} +\frac{1}{2}-\frac{cos80}{2}+ \frac{1-cos160}{2}

                  =1-\frac{1}{2}\Big[ {cos40} +{cos80}\Big]+ \frac{1-cos160}{2}

                                                                   \because cosA+cosB=2cos\frac{A+B}{2} } .{cos\frac{A-B}{2}}

                  =1-\frac{1}{2}\Big[ {2cos\frac{40+80}{2} } .{cos\frac{40-80}{2}}\Big]+ \frac{1-cos160}{2}

                  =1-\Big[ {cos60 } .{cos20}\Big]+ \frac{1}{2} -\frac{cos(180-20)}{2}

                                                                                     \because cos(180-\theta)=-cos\theta

                   =\frac{3}{2} -\frac{1}{2} {cos20}+ \frac{1}{2}cos20

                   =\frac{3}{2}

Therefore, sin^2 160+sin ^2 140+sin^{2} 100=\frac{3}{2}

Similar questions